Abstract: An actuator device for a wind power installation, in particular for a rotor blade of a wind power installation, and also to an associated wind power installation and a method of assembly, with an actuator component and a control component, wherein the actuator component has at least one actuator layer with a preferential direction and, substantially parallel to the actuator layer, at least one exciting layer, wherein the actuator layer comprises a photoactuator, wherein the photoactuator is designed to change a strain and/or stress of the actuator layer in the preferential direction on the basis of excitation light, wherein the exciting layer is designed to guide excitation light into the actuator layer, wherein the control component comprises a light source and a light guide, wherein the light source is arranged away from the exciting layer and is connected to the exciting layer by means of the light guide. The actuator device makes it possible to ensure greater operational reliability.
Abstract: A method for controlling a gearless wind turbine, wherein the wind turbine comprises a generator having a stator and a rotor and an air gap therebetween which has an air gap thickness, wherein the generator is designed as an internal rotor, with the stator as an outer part and the rotor as an inner part, or the generator is designed as an external rotor, with the rotor as an outer part and the stator as an inner part, said method comprising the following steps: detecting a temperature of the outer part as an outer part temperature, detecting a temperature of the inner part as an inner part temperature, calculating a temperature difference as the difference between the outer part temperature and the inner part temperature, and controlling the generator according to the temperature difference such that a reduction in the air gap thickness by thermal expansion of the generator is counteracted.
Type:
Grant
Filed:
April 5, 2018
Date of Patent:
March 30, 2021
Assignee:
Wobben Properties GmbH
Inventors:
Ulf Schaper, Kai Enskonatus, Wojciech Giengiel
Abstract: A wind-turbine rotor blade, comprising a blade root and a blade tip, a flange arranged on the blade root side for fastening the rotor blade to a rotor hub of a wind turbine, and a pitch bearing for adjusting the angle of attack of the rotor blade. The rotor blade has a non-pitched carrier, on which the flange is embodied, wherein the pitch bearing is fastened to the carrier and is spaced apart from the flange toward the blade tip.
Type:
Grant
Filed:
May 9, 2017
Date of Patent:
March 23, 2021
Assignee:
Wobben Properties GmbH
Inventors:
Frank Knoop, Wilko Gudewer, Alexander Hoffmann, Samer Mtauweg
Abstract: Provided is a method for generating a multiphase electrical alternating current having a sinusoidal fundamental wave in each phase by a multiphase inverter of a wind power installation. The multiphase inverter is controlled by a tolerance band method which respectively has an upper and a lower band limit for each of the phases of the inverter. The inverter has, for each phase, an upper switch for generating a positive sine half-wave of the alternating current of the phase and a lower switch for generating a negative sine half-wave of the alternating current of the phase. The method includes generating the positive sine half-wave by the upper switch and generating the negative sine half-wave by the lower switch based on the band limits of the phase, and changing at least one of the band limits such that a signal component superimposed on the respective sinusoidal fundamental wave is reduced.
Abstract: A spar cap for a rotor blade of a wind power installation, having a longitudinal extent from a first end to a second end, a transverse extent orthogonal to the longitudinal extent, and a thickness orthogonal to the longitudinal extent and to the transverse extent. A method for producing a spar cap as mentioned at the outset.
Abstract: A method for determining an equivalent wind speed of a rotor blade plane of a wind power installation is provided. The wind power installation has a rotor with rotor blades that have adjustable blade angle. The method includes determining an electric internal power available in the wind power installation depending on a captured electric power and a captured rotational speed of the rotor. The method includes determining the equivalent wind speed depending on the determined available internal power and the captured rotational speed.
Abstract: A wind turbine rotor blade that has a rotor blade tip, a rotor blade root, a suction side, a pressure side, a rotor blade length, a profile depth and a pitch axis of rotation. The profile depth decreases along the rotor blade length from the rotor blade root to the rotor blade tip. The trailing edge has a trailing edge delimiting line, which replicates the contour of the trailing edge. The trailing edge has a plurality of serrations to improve flow behavior at the trailing edge. The serrations respectively have a serration tip, two serration edges and an angle bisector. The serration edges are provided non-parallel to a direction of incident flow that is perpendicular to the pitch axis of rotation. The serration edges are non-perpendicular to a tangent to the trailing edge delimiting line. The trailing edge delimiting line has a plurality of portions, at least one of the portions extending non-parallel to the pitch axis of rotation.
Abstract: Provided is a method, device and system for outputting a controller setpoint for at least one power generator that is at least one wind power installation, at least one windfarm, or a cluster controller. The method includes receiving, over a data input, a data packet including a current setpoint and a plurality of future setpoints, storing the future setpoints of the received data packet in a memory, and outputting, over a data output, the current setpoint as the controller setpoint. If after the expiration of a predefined time period from the reception of the data packet, no further data packet is received, a first setpoint of the stored plurality of future setpoints is output over the data output as a next controller setpoint.
Abstract: A wind park for feeding power into a supply network at a connection point is provided. The wind park includes wind turbines for generating the power, a DC network for transmitting the power to the connection point, an inverter configured to transform electrical DC voltage into an AC voltage for feeding the power into the supply network, at least one DC-DC converter for feeding the power into the DC network. The DC-DC converter includes a switching device and a transformer with primary and secondary sides. The primary side is coupled to the at least one wind turbine via the switching device and the secondary side is coupled to the DC park network via at least one rectifier. The DC-DC converter is configured to apply a DC voltage of changing polarity to the primary side by the switching device to transform a DC voltage of the at least one wind turbine.
Abstract: A method for supplying electric power to an electrical supply grid that has a grid rated voltage and is operated at a grid voltage, wherein the supplied electric power has a reactive power component that is prescribed by a phase angle describing an angle between a current and a voltage of the supplied electric power, wherein the phase angle is set by means of phase angle control that has a delay function characterized by at least one time constant.
Abstract: A rotor for a wind power installation, to a rotor blade for a wind power installation, to a sleeve, and to a method for the assembly of a rotor. A rotor for a wind power installation, having at least one rotor blade which is connected by means of a face side to a rotor hub, wherein the rotor blade comprises a transverse bolt recess which extends substantially radially with respect to the longitudinal axis of the rotor blade and in which a transverse bolt is arranged, wherein the transverse bolt has a transverse bolt opening, a longitudinal bolt recess which extends substantially parallel to the longitudinal axis of the rotor blade, wherein the longitudinal bolt recess and the transverse bolt recess have a common passage, and a longitudinal bolt is arranged within the longitudinal bolt recess and within the transverse bolt opening, a sleeve is arranged in the longitudinal bolt recess, wherein the longitudinal bolt extends through a cavity of the sleeve.
Abstract: A method for controlling a wind turbine having rotor blades with an adjustable blade angle, comprising the steps operating the wind turbine in a partial load mode for wind velocities up to a nominal wind velocity, wherein in the partial load mode, a fixed partial load angle is provided for the blade angle, operating the wind turbine in a full load mode for wind velocities above the nominal wind velocity, wherein in the full load mode the blade angle is enlarged with increasing wind velocity and has values above the partial load angle, and wherein in the partial load mode, starting from a predetermined operating state, the blade angle is reduced as compared with the partial load angle.
Type:
Grant
Filed:
November 17, 2016
Date of Patent:
December 15, 2020
Assignee:
Wobben Properties GmbH
Inventors:
Andree Altmikus, Wolfgang De Boer, Ralf Messing
Abstract: Provided is a method for operating wind energy converters, in particular of a wind farm. The power limitation mode in this case comprises the steps of turning off at least one of the wind energy converters and operating at least one wind energy converter different to the turned-off wind energy converter, activating a generator heating of the turned-off wind energy converter, turning off the working wind energy converter at or after occurrence of a predefined event, in particular after a predefined time period has elapsed or when a predefined instant is reached, and activating the generator heating of the wind energy converter turned off at or after the occurrence of the predefined event. Provided is a wind farm and to a wind energy converter for carrying out such a method.
Abstract: Provided is a method for feeding electric power into an electricity supply grid having a grid voltage at a grid frequency having a grid nominal frequency. Feeding the electric power is performed by a converter-controlled feeding-in device, which may be a wind farm or a wind turbine. The feeding-in device feeds in an infeed current as electric AC current having a frequency, a phase, an infeed voltage and a fed-in power. The infeed voltage may be set. The method includes estimating a converter proportion in a grid section of the electricity supply grid that represents a ratio of power fed in by way of converters to overall fed-in power and controlling the infeed of the electric power depending on the estimated converter proportion.
Abstract: A method for recording the magnitude and phase of electrical voltage in an electrical three-phase supply network for a fundamental and at least one harmonic is provided. The method includes measuring an electrical three-phase voltage of the supply network, transforming the measured voltage values into polar coordinates using a rotating voltage phasor for the fundamental as a measured reference phasor, and respectively observing values of at least one voltage phasor for the fundamental and of at least one voltage phasor for at least one harmonic to be recorded with the aid of a state observer, and tracking the observed values on the basis of the measured reference phasor.
Type:
Grant
Filed:
July 13, 2016
Date of Patent:
November 17, 2020
Assignee:
Wobben Properties GmbH
Inventors:
Christian Strafiel, Sönke Engelken, Ingo Mackensen, Stefan Gertjegerdes, William Meli
Abstract: A lifting device for lifting components of a wind turbine. The lifting device has at least a first and second fastening unit in each case for fastening a component of a wind turbine and a first arm having a plurality of bores. The bores have different angles relative to the first and second fastening unit.
Type:
Grant
Filed:
January 4, 2017
Date of Patent:
November 10, 2020
Assignee:
Wobben Properties GmbH
Inventors:
Wolfgang Meyer, Frank Lülker, Sascha Beeckmann
Abstract: A segment plate for a stator lamination assembly of a generator of a wind turbine, and a base plate in the form of a ring segment, wherein the segment plate has a first radial portion in which recesses are provided for receiving a stator winding and radially adjacent to the first radial portion a second radial portion forming a segment of a magnetic yoke of the generator. In particular adjacent to the second radial portion the segment plate has a third radial portion forming a segment of a stator carrier structure of the generator and which in particular is adapted in conjunction with the third radial portions of further segment plates to form the stator carrier structure of the generator. A stator lamination assembly, a generator and a wind turbine, each having such segment plates.
Abstract: A method of erecting a wind power installation which has an aerodynamic rotor having rotor blade connections. A lifting beam having a ballast unit is fixed to a crane hook of a crane. A rotor blade is fixed to a second crane hook at an underside of the ballast unit by means of lifting cables. The lifting beam and the rotor blade are lifted by the crane for mounting the rotor blade at one of the rotor blade connections.
Abstract: A trailing edge for a rotor blade tip of an aerodynamic rotor of a wind turbine. The trailing edge comprises a trailing edge delimiting line, which replicates the contour of the trailing edge, and multiple serrations to improve flow behavior at the trailing edge. The serrations are provided at the trailing edge in dependence on the trailing edge delimiting line, and consequently on geometrical and operating parameters.
Abstract: A stator carrier for a stator of a wind turbine generator, in particular a multi-pole slowly rotating synchronous ring generator. It is proposed that the stator comprises a first carrier plate, a second carrier plate, a cavity which is provided between the two carrier plates and is open radially outwardly, a separating plate which is arranged between the two carrier plates and which subdivides the cavity into a first cavity portion and a second cavity portion, wherein there is provided a number of first flow passages extending from the first carrier plate directly into the second cavity portion and a number of second flow passages extending from the second carrier plate directly into the first cavity portion. There is further proposed a stator having such a stator carrier as well as a generator and a wind turbine having same.
Type:
Grant
Filed:
December 21, 2017
Date of Patent:
October 27, 2020
Assignee:
Wobben Properties GmbH
Inventors:
Birte Messner, Jochen Röer, Jan Carsten Ziems