Patents Assigned to Wuhan University
  • Publication number: 20220178800
    Abstract: The present disclosure provides a method for determining free radicals of CaO—Al2O3 series oxide melts. The method includes dividing the CaO—Al2O3 series oxide powder to into two aliquots by mass, putting into two identical corundum crucibles and tamping. The method also includes heating the two aliquots at the same high temperature in furnaces with and without a static magnetic field, respectively. Cylindrical samples with the same diameter and height, and only containing the melt at the bottom of the crucible and the slag reaction interface are drilled out from said two crucibles and ground into powder samples. The free radical relative content of the CaO—Al2O3 series oxide melts can be calculated from a ratio between the difference of the reaction mass contents of CaO in the two powder samples and the total mass content of CaO.
    Type: Application
    Filed: August 6, 2021
    Publication date: June 9, 2022
    Applicant: Wuhan University of Science and Technology
    Inventors: Ao HUANG, Shenghao LI, Huazhi GU, Lvping FU, Meijie ZHANG
  • Publication number: 20220149584
    Abstract: The present invention discloses a distributed pulsed light amplifier based on optical fiber parameter amplification, comprising a pump pulsed light source, a sensing pulsed light source, a synchronization device, a two-in-one optical coupler, an optical circulator, a parameter amplification optical fiber, a first optical filter, a photoelectric detector and a signal acquisition device. According to the distributed pulsed light amplifier, high-power pulsed light is used as pump light to generate an optical fiber parameter amplification effect near a zero-dispersion wavelength of an optical fiber, thereby amplifying a power of another sensing pulsed light. Meanwhile, due to the fact that effective optical fiber parameter amplification cannot be achieved through low-power light leakage outside a duration interval of the pump pulsed light, leaked light from the sensing pulsed light cannot be amplified, and the effect of amplifying a pulse extinction ratio can be achieved at the same time.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: Wuhan University of Technology
    Inventors: Zhengying LI, Xuelei FU, Ben XIONG, Zhou ZHENG
  • Publication number: 20220144596
    Abstract: A nonlinear resonance model-based active filtering crane steel rope resonance elimination control method, including: constructing a two-dimensional dynamic model of a bridge crane according to a Lagrange's equation; constructing a steel wire rope-motor nonlinear resonance model to detect a harmonic; and eliminating the harmonic by means of active filtering. The present disclosure makes in-depth study on positioning of a crane and intelligent control of an anti-swing and resonance elimination control system and uses active filtering to eliminate resonance between a heavy object and the steel wire rope, thereby reducing a swinging angle and achieving the rapid resonance elimination and anti-swing effect. The active filtering technology can quickly and effectively detect a resonance current so as to effectively suppress resonance between the heavy object and the steel wire rope, and further helps a controller quickly and accurately position a trolley to further improve anti-swing performance.
    Type: Application
    Filed: July 29, 2021
    Publication date: May 12, 2022
    Applicants: Wuhan University of Science and Technology, Sinosteel Wuhan Safey&Environment Protection Research
    Inventors: Huikang LIU, Sen LIN, Xianhua WANG, Qiangguang LU, Lin CHAI, Yikang ZU, Zhou ZHOU, Dongtian LIU, Qing YU, Weijia WANG
  • Publication number: 20220042860
    Abstract: An optical fiber grating sensing method applied to small-scale fire source monitoring are provided, distinguishing two concepts of a spatial resolution and a perception resolution, under the premise of ensuring the spatial resolution of a traditional fiber Bragg grating sensing system, only increase the number of fiber Bragg gratings covered by a single pulsed optical signal without changing a pulse width of a pulsed optical signal, so as to improve the perception resolution of the system without increasing the requirements for a hardware circuit, and truly shorten an interval between adjacent fiber Bragg gratings. Improving the perception resolution of the system, which not only ensures the spatial resolution of the system, but also realizes the monitoring of small-scale fire sources; by adopting a simple feature extraction algorithm to obtain fire temperature information in different areas, the temperature detection speed of the system is fast.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 10, 2022
    Applicant: Wuhan University of Technology
    Inventors: Zhengying LI, Lixin WANG, Honghai WANG, Huiyong GUO, Desheng JIANG, Jiaqi WANG
  • Patent number: 11227143
    Abstract: An automatic classification method of whole slide images (WSIs) for cervical tissue pathology based on confidence coefficient selection. The automatic classification method includes steps: S1: dividing the WSIs for the cervical tissue pathology into small pieces having set size, gathering the small pieces of each WSI into a packet, and removing blank pieces in the packets; S2: building a deep CNN model; S3: training the deep CNN for designated rounds; S4: performing sequential arrangement and connection to obtain feature vectors of WSIs by using the trained deep CNN as the feature extractor; S5: training a support vector machine classifier; and S6: processing the WSIs for the cervical tissue pathology, to be classified, through step S1 and step S4 to obtain the feature vectors of the images, and inputting the feature vectors into the trained support vector machine classifier to realize classification.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: January 18, 2022
    Assignee: Wuhan University
    Inventors: Juan Liu, Zhuoyu Li, Jing Feng, Zhiqun Zuo
  • Patent number: 11223426
    Abstract: A method for correcting a phase jump caused by polarization-induced fading in optical fiber phase demodulation, including the steps of: 1, selecting a demodulated phase in the case of non-depolarization as historical sample data; 2, determining an autoregressive coefficient and a moving average coefficient of the autoregressive moving average model for the demodulated phase; 3, establishing a Kalman prediction model for the demodulated phase, and deriving recursive equations of the Kalman prediction model for the demodulated phase; and 4, judging whether a jump point exists in the actual demodulated phase, determining polarization states of lights if the jump point exists, and correcting the jump point when the polarization states of the lights are in polarization orthogonality by replacing the actual demodulated phase with a predicted phase value. The disclosure ensures the correctness of subsequent vibration-based signal processing.
    Type: Grant
    Filed: February 20, 2021
    Date of Patent: January 11, 2022
    Assignee: Wuhan University of Technology
    Inventors: Zhengying Li, Minlang Fan, Honghai Wang, Jun Wu, Jiaqi Wang
  • Publication number: 20210384987
    Abstract: A method for correcting a phase jump caused by polarization-induced fading in optical fiber phase demodulation, including the steps of: 1, selecting a demodulated phase in the case of non-depolarization as historical sample data; 2, determining an autoregressive coefficient and a moving average coefficient of the autoregressive moving average model for the demodulated phase; 3, establishing a Kalman prediction model for the demodulated phase, and deriving recursive equations of the Kalman prediction model for the demodulated phase; and 4, judging whether a jump point exists in the actual demodulated phase, determining polarization states of lights if the jump point exists, and correcting the jump point when the polarization states of the lights are in polarization orthogonality by replacing the actual demodulated phase with a predicted phase value. The disclosure ensures the correctness of subsequent vibration-based signal processing.
    Type: Application
    Filed: February 20, 2021
    Publication date: December 9, 2021
    Applicant: Wuhan University of Technology
    Inventors: Zhengying LI, Minlang FAN, Honghai WANG, Jun WU, Jiaqi WANG
  • Publication number: 20210384426
    Abstract: The disclosure relates to a phase change thermal storage ceramic having high service temperature and improved utilization rate and utilization efficiency of heat. It is prepared at a low cost with a simple, easy-to-industrially-realized method. A mixture is obtained by mixing and stirring evenly 50-85 wt % of fused mullite powder, 10-45 wt % of pretreated aluminum-silicon alloy powder, and 3-8 wt % of ball clay. A ceramic body is formed by press molding the mixture at 80-150 MPa. The ceramic body is cured at 25-28° C. and a relative humidity of 70-75 RH for 24-36 h, dried at 80-120° C. for 24-36 h, and held at 1,100-1,300° C. for 3-5 h to prepare the phase change thermal storage ceramic. The pretreated aluminum-silicon alloy powder is prepared by holding aluminum-silicon alloy powder in water vapor at 0.02-0.20 MPa for 0.5-3 h to impregnate in an alkaline silica sol and drying the impregnated powder.
    Type: Application
    Filed: February 4, 2021
    Publication date: December 9, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Meijie Zhang, Cangjuan Han, Huazhi Gu, Ao Huang, Lvping Fu
  • Publication number: 20210346872
    Abstract: The present disclosure provides a lignite char supported nano-cobalt composite catalyst and a preparation method thereof. In the method, lignite is used as a raw material, and a lignite char supported high dispersion nano-cobalt composite catalyst is obtained by a modified impregnation method followed by a high temperature pyrolysis process. The composite catalyst prepared by the present disclosure has a hierarchical pore structure, a high specific surface area, and uniformly dispersing nano-sized cobalts on the lignite char with controllable particle size, so that the obtained catalyst has an excellent catalytic activity for low-temperature CO2 methanation; moreover, the preparation process is simple and feasible, the raw materials used are cheap and easily available. Therefore, the composite catalyst is very suitable for industrial production and application.
    Type: Application
    Filed: November 23, 2020
    Publication date: November 11, 2021
    Applicant: Wuhan University of Technology
    Inventors: Chunxia ZHAO, Feng LI, Wen CHEN, Wei JIN, Yanyuan QI, Shuang YANG
  • Publication number: 20210284579
    Abstract: A titanium-containing calcium hexaaluminate material and preparation method thereof is disclosed. The technical solution is: using 60˜80 wt % alumina micro powder, 5˜20 wt % calcium-containing micro powder, 10˜20 wt % titania micro powder and 1˜10 wt % manganese oxide micro powder as raw materials, blending the raw materials evenly in a planetary ball mill to obtain a blend, machine pressing the blend at 100˜200 MPa to obtain a green body, drying the green body at 110˜200° C. for 12˜36 h, and incubating the dried green body at 1500˜1800° C. for 1˜8 h to obtain the titanium-containing calcium hexaaluminate material. The present disclosure has low cost and simple process, and the prepared titanium-containing calcium hexaaluminate material has the characteristics of good chemical stability, high thermal shock resistance and strong melt resistance to titanium-aluminum alloy.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 16, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Lvping Fu, Huazhi Gu, Ao Huang, Meijie Zhang
  • Patent number: 11119131
    Abstract: Provided is a method for estimating optimal efficiency point parameters in an axial-flow PAT power generation mode, including: I1, calculating an axial velocity of an optimal efficiency point; I2, calculating a flow rate of the optimal efficiency point; I3, calculating a theoretical hydraulic head; I4, calculating a frictional hydraulic head loss and a local hydraulic head loss of each segment; I5, calculating an output power of the optimal efficiency point; I6, calculating a hydraulic head of the optimal efficiency point in a power generation mode; and I7, calculating an optimal efficiency. Further provided is a method for estimating a performance curve in an axial-flow PAT power generation mode based on the above method for estimating an optimal efficiency point parameter, including: II1, calculating a normalized flow-hydraulic head curve; II2, calculating a normalized hydraulic head-output power curve; and II3, calculating a hydraulic head-efficiency curve.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: September 14, 2021
    Assignee: Wuhan University
    Inventors: Zhongdong Qian, Fan Wang, Jing Dong, Zehao Li, Zhiwei Guo
  • Publication number: 20210221968
    Abstract: A thermoplastic polymer-based composite material and a preparation method thereof are provided. The thermoplastic polymer-based composite material is obtained by impregnating a reinforcing material with a mixture or oligomer of an epoxy resin, a bismaleimide resin, and a bifunctional amine (calculated based on active hydrogen), and then performing an in-situ polymerization. The thermoplastic polymer-based composite material has excellent impregnation effect, excellent secondary processing performance, relatively high heat resistance, excellent flame retardancy, and mechanical properties, and excellent comprehensive performance.
    Type: Application
    Filed: November 16, 2018
    Publication date: July 22, 2021
    Applicants: Changzhou Bamstone Composites Co., Ltd., Wuhan University of Technology
    Inventors: Jun WANG, Junjie ZOU, Xiaoli YANG, Wei LIU
  • Publication number: 20210221970
    Abstract: A thermoplastic polymer-based composite material and a preparation method thereof are provided. The thermoplastic polymer-based composite material is obtained by impregnating a reinforcing material with a mixture or an oligomer of an epoxy resin, a bisphenol A/F, and a catalyst and then performing an in-situ polymerization. The thermoplastic polymer-based composite material is less expensive to produce, has an optimal impregnation effect, excellent secondary processing performance, high heat resistance, desirable mechanical properties and excellent overall performance.
    Type: Application
    Filed: November 16, 2018
    Publication date: July 22, 2021
    Applicants: Changzhou Bamstone Composites Co., Ltd., Wuhan University of Technology
    Inventors: Jun WANG, Junjie ZOU, Xiaoli YANG, Wei LIU
  • Publication number: 20210183271
    Abstract: The disclosure relates to a method for simulating intraplate volcanism. A technical solution is: mixing 47-60 wt % of calcium oxide powder, 35 wt % of alumina powder and 5-18 wt % of silica powder uniformly to obtain a mixed powder; putting the mixed powder in a corundum crucible, placing the crucible in a high-temperature furnace provided with an observation window outside which an industrial camera with a depression angle of 30-45° is provided, heating to 1,500-1,900° C. at a rate of 1-30° C./min under an air atmosphere at a normal pressure, holding for 0.5-5 h; recording intraplate volcanism formed by upwelling of a melt of the mixed powder along an inner wall of the crucible during the holding with the industrial camera to obtain a simulated process of the intraplate volcanism.
    Type: Application
    Filed: November 13, 2020
    Publication date: June 17, 2021
    Applicant: Wuhan University Of Science and Technology
    Inventors: Ao HUANG, Yongshun ZOU, Huazhi GU
  • Publication number: 20210180948
    Abstract: The disclosure provides a method for determining a slope slip plane with a gently-inclined soft interlayer, including: S1, determining a curve formed with a slip arc of a trailing edge tearing plane, a soft interlayer plane and a slip arc of a leading edge shear opening as a slope slip plane; S2, calculating a slip plane stability coefficient; S3, determination of a position of the gently-inclined soft interlayer plane: if the slip plane stability coefficient is less than 1 but close to 1, determining that the position of the slope slip plane is accurate; otherwise, moving the position of the soft interlayer plane and repeating steps S1 and S2, until the slip plane stability coefficient is less than 1 and close to 1. The method is simple, and has a high accuracy for determining a non-circular slip plane with a soft interlayer as a bottom slip plane.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 17, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Bin HU, Jing LI, Aneng CUI, Kai CUI, Qinghong FANG, Wei YANG, Yalan JIA, Yang LIU, Xin ZHU
  • Publication number: 20210172730
    Abstract: The disclosure relates to a method for fabricating a speckle for high temperature deformation measurement of a shaped refractory material. A technical solution includes mixing a hercynite micropowder and a liquid mixing agent in a mass ratio of (3-6):1, and ultrasonically treating to obtain a speckle mixture; polishing a surface of a shaped refractory material to be measured, removing impurities, and spraying the speckle mixture on the surface of the shaped refractory material to be measured with a pneumatic airbrush in a time hood to obtain an uncured speckle; heating the uncured speckle to 60-80° C., keeping for 1-3 h, then heating to 100-120° C., and keeping for 1-3 h to obtain a speckle for high temperature deformation measurement of a shaped refractory material. The fabricated product is suitable for high temperature deformation measurement of a shaped refractory material at 1,600° C.
    Type: Application
    Filed: November 9, 2020
    Publication date: June 10, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Ao HUANG, Shenghao LI, Huazhi GU, Lvping FU, Yajie DAI
  • Publication number: 20210123842
    Abstract: A shear box of shear rheology experiment of a soft rock for simulating the coupling of the rainfall seepage and blasting vibration includes an upper shear box, a lower shear box, a normally-loading indenter, a normally-loading cushion block and a test piece joint. The upper shear box is tightly connected to the lower shear box by a vertical roll. The vertical roll passes through the through holes at both sides of the upper shear box and is engaged with the lower shear box through female thread connection holes. The normally-loading indenter passes through a circular through hole and presses against the normally-loading cushion block. The first end of the test piece joint is installed into a water or gas outlet hole, and the second end of the test piece joint is directly mortised into a rock test piece.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 29, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Bin HU, Liyao MA, Jianlong SHENG, Guangquan ZHANG, Shibing HUANG, Shuxiang CHANG, Jing DING, Ji LIU
  • Publication number: 20210116922
    Abstract: The present invention discloses an integrated automated driving system for a maritime autonomous surface ship (MASS).
    Type: Application
    Filed: September 28, 2020
    Publication date: April 22, 2021
    Applicant: Wuhan University of Technology
    Inventors: Yong Ma, Yujiao Zhao
  • Patent number: 10962651
    Abstract: The invention discloses an ionospheric delay correction method for LEO satellite augmented navigation systems for GNSS. According to the method, GNSS satellite navigation signals received by LEO GNSS receiver loads are used for providing ionospheric information for navigation augmentation for earth surface users. In the method, as a set of mobile navigation augmentation reference stations, LEO satellites continuously observe the global ionosphere to generate ionospheric delay correction information, and the ionospheric delay correction information is sent to the earth surface users to obtain augmented navigation performance.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 30, 2021
    Assignee: Wuhan University
    Inventors: Jingbin Liu, Ruizhi Chen, Deren Li, Liang Chen, Lei Wang, Shulun Liu
  • Patent number: 10801720
    Abstract: A porous-medium premixing combustor is provided, which includes: an air-fuel gas mixer, a combustor body, a thermocouple, an ignition electrode, and a detecting electrode. The combustor body includes a casing connected to the air-fuel gas mixer; an outer and an inner burner-block, wherein the outer burner-block and the casing are connected, forming a square chamber, and the inner burner-block is provided inside the square chamber, with a via hole communicating with a pipe; and a mixed gas distributing plate, an ordered porous plate, a small-pore foamed ceramic plate, and a big-pore foamed-ceramic plate sequentially provided along an axis direction of the via hole of the inner burner-block. The thermocouple is provided at the casing and extends into the square chamber. The ignition electrode is provided close to an end of the big-pore foamed-ceramic plate. The detecting electrode is provided close to an exit end of the big-pore foamed-ceramic plate.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 13, 2020
    Assignee: Wuhan University of Science and Technology
    Inventors: Yuanyuan Chen, Xuecheng Xu, Bin Li, Benwen Li, Zhu He, Yawei Li, Xiong Liang