Patents Assigned to X. Development
-
Publication number: 20190035298Abstract: Disclosed are systems and methods for simulating a flight path of an aerial vehicle. An exemplary method includes receiving a starting point, receiving prevailing wind patterns, generating a smooth model of wind vectors based on the prevailing wind patterns, generating a noise model including one or more submodels simulating regional differences in prevailing wind patterns, determining a wind vector at the starting point, determining a noise value at the starting point, applying the noise value to the wind vector at the starting point to generate a noise added wind vector, determining displacement based on the noise added wind vector over a time step, and determining a waypoint based on the displacement, wherein determining a noise value at the starting point includes determining a portion of the noise value contributed by each submodel, and determining the noise value by calculating a weighted mean of noise values contributed by each submodel.Type: ApplicationFiled: July 28, 2017Publication date: January 31, 2019Applicant: X Development LLCInventors: Bradley Rhodes, Salvatore J. Candido
-
Patent number: 10191489Abstract: A computer-implemented method includes receiving data from one or more sensors that detect one or more environmental parameters associated with an autonomous submersible structure, determining one or more navigation parameters based on the one or more environmental parameters and one or more viability profiles associated with cargo contained within the autonomous submersible structure and that specify constraints on the one or more environmental parameters, and controlling, based on the one or more navigation parameters, a propulsion system of the autonomous submersible structure.Type: GrantFiled: November 8, 2016Date of Patent: January 29, 2019Assignee: X Development LLCInventors: Evan Douglas Rapoport, Rohinton Mehta
-
Patent number: 10191545Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving brain activity data of a user from a brain wave sensor. Identifying Alpha wave activity from the brain activity data. Determining a synchronization timing for presenting content to the user such that the content appears on a display device during a predetermined phase of the Alpha wave activity based on the Alpha wave activity. Causing the content to be displayed on the display device according to the synchronization timing, where the content includes a first content item and a second content item that is associated with the first content item.Type: GrantFiled: December 27, 2016Date of Patent: January 29, 2019Assignee: X Development LLCInventors: Sarah Ann Laszlo, Gabriella Levine, Philip Edwin Watson, Matthew Dixon Eisaman, Brian John Adolf
-
Patent number: 10190993Abstract: Aspects of the disclosure relate to systems and techniques for inspecting seals for high altitude balloons. In one example, a system may include a reflective surface, a translucent material on the reflective surface, and a movable light source configured to move along the reflective surface and provide light to the reflective surface. The light is provided such that it is reflected from the reflective surface and through the translucent material in order to backlight a balloon envelope seal for inspection. A method for inspecting a balloon envelope seal may include placing balloon envelope material on a table, forming a seal between portions of the material, moving a light over the seal, shining light onto a reflective portion of the table below the seal to backlight the seal, and inspecting the seal using the backlighting of the seal.Type: GrantFiled: May 1, 2018Date of Patent: January 29, 2019Assignee: X Development LLCInventor: Daniel Henry Fourie
-
Patent number: 10190928Abstract: A flexible sensor that includes a printed circuit board (PCB), a capacitive structure on the PCB, and mechanical coupling sites. The PCB includes a slot extending from an outer edge of the PCB to an inner portion of the PCB, and the slot defines a first edge and a second edge facing the first edge. The first and second edges are separated by a gap when the PCB is in an unflexed state. The slot is configured to permit the PCB to flex so as to vary a relative position of the first edge with respect to the second edge. The capacitive structure on the PCB includes a first edge electrode on a portion of the first edge of the PCB, and a second edge electrode on a portion of a second edge of PCB. The second edge electrode is aligned with the first edge electrode across the slot.Type: GrantFiled: November 17, 2017Date of Patent: January 29, 2019Assignee: X Development LLCInventor: Alexander Shai Shafer
-
Patent number: 10192010Abstract: An example method may include identifying (i) a first group of reactions that corresponds to a first set of precursors and a first set of reaction products and (ii) a second group of reactions that corresponds to a second set of precursors and a second set of reaction products. No precursor in the first set of precursors is also in the second set of precursors, no reaction product in the first set of reaction products is also a precursor in the second set of precursors, and no reaction product in the second set of reaction products is also a precursor in the first set of precursors. The method may also include executing a first processing thread to iteratively calculate respective quantities of the precursors in the first set of precursors and executing a second processing thread to iteratively calculate respective quantities of the precursors in the second set of precursors.Type: GrantFiled: May 25, 2016Date of Patent: January 29, 2019Assignee: X Development LLCInventors: Jonathan Ross, Jason Thompson
-
Patent number: 10189159Abstract: Examples are provided that describe a model free power detector. In one example, a method includes receiving, by one or more computing devices, a measurement of electrical power to a robotic device. The method also includes receiving, by the one or more computing devices, a measurement of mechanical power by the robotic device. Based on combinations of the electrical power to the robotic device being one of positive, negative, or about zero, and the mechanical power by the robotic device being one of positive, negative, or about zero, the method includes determining possible states of operation of the robotic device. The method also includes providing, by the one or more computing devices, the possible states of operation of the robotic device to a detector.Type: GrantFiled: April 6, 2015Date of Patent: January 29, 2019Assignee: X Development LLCInventors: Rob Wilson, Jeffrey Thomas Bingham
-
Patent number: 10184266Abstract: Techniques and mechanisms to form a semi-rigid structure from a flexible sheet. In an embodiment, a portion of the flexible sheet includes layer portions and one or more compartments each disposed between said layer portions. The one or more compartments each having disposed therein a first fluid compound that is reactive—e.g., when exposed to oxygen, heat, ultraviolet (or other) light, or a different fluid compound—to form a solid. In another embodiment, a graphic printed on the flexible sheet indicates a location of the one or more compartments. Activation of the one or more compartments and bending of the flexible sheet portion at the activated one or more compartments aids in the formation of a shelter or other semi-rigid structure.Type: GrantFiled: June 19, 2015Date of Patent: January 22, 2019Assignee: X Development LLCInventors: Gabriella Levine, Richard Wayne DeVaul
-
Patent number: 10186158Abstract: Apparatus and methods related to aviation communications are included. A computing device can receive position data indicating a position of an aerial vehicle. The position can include an altitude. The computing device can determine, from a plurality of possible airspace classifications, a first airspace classification at the position of the aerial vehicle, where each airspace classification specifies one or more communication parameters for communication within an associated airspace. The computing device can select, from a plurality of communication repositories, a first communication repository that is associated with the first airspace classification, where each communication repository specifies a set of pre-defined communication components for at least one associated airspace classification. The computing device can generate a communication related to the aerial vehicle using the first communication repository. The computing device can send the generated communication to at least one recipient.Type: GrantFiled: January 3, 2018Date of Patent: January 22, 2019Assignee: X Development LLCInventors: James Burgess, Chirath Thouppuarachchi, Gregory Whiting
-
Fading mitigation of turbulent channel based on polarization diversity in coherent optical receivers
Patent number: 10187161Abstract: A method includes receiving a first data packet on a first polarization portion of an optical signal from a second communication terminal through a free space optical link during a first time period and receiving a first data packet replica on the first polarization portion of the optical signal during a second time period. The second time period is delayed in time relative to the first time period. The method also includes determining receiving powers for the optical link during both the first time period and the second time period based on at least one of the received first data packet and the received first data packet replica. The method also includes selecting the one of the first data packet or the first data packet replica that is associated with the highest receiving power for the optical link as surviving data for maintaining the optical link.Type: GrantFiled: August 29, 2017Date of Patent: January 22, 2019Assignee: X Development LLCInventor: Christopher Joshua Shiro Ito -
Patent number: 10181495Abstract: A process for producing a light emitting diode device, the process including: forming a plurality of quantum dots on a surface of a layer including a first area and a second area, the forming including: exposing the first area of the surface to light having a first wavelength while exposing the first area to a quantum dot forming environment that causes the quantum dots in the first area to form at a first growth rate while the quantum dots have a dimension less than a first threshold dimension; exposing the second area of the surface to light having a second wavelength while exposing the second area to the quantum dot forming environment that causes the quantum dots in the second area to form at a third growth rate while the quantum dots have a dimension less than a second threshold dimension; and processing the layer to form the LED device.Type: GrantFiled: December 21, 2017Date of Patent: January 15, 2019Assignee: X Development LLCInventors: Martin Friedrich Schubert, Michael Jason Grundmann
-
Patent number: 10181729Abstract: A system and method for a mobile hybrid transmitter/receiver (TX/RX) node for wireless resonant power delivery is disclosed. A hybrid TX/RX can be configured to travel to remote, wirelessly-powerable receivers and deliver power to them wirelessly. A hybrid TX/RX device can include a transmitter component (TX), a receiver (RX) component, and a power store for storing power for supply to remote receivers. The TX/RX device can be configured in an autonomous unmanned vehicle operational to travel between a fixed source transmitter devices and one or more specified locations that may be host to one or more remote receivers. In the location of the one or more remote receivers, the TX component may function to wirelessly transfer power from the power store to the one or more remote receivers. In the location of the fixed source transmitter device, RX component can be configured to receive power via wireless power transfer, and to use the received power to at least partially replenish the power store.Type: GrantFiled: November 13, 2015Date of Patent: January 15, 2019Assignee: X Development LLCInventors: Richard Wayne DeVaul, Brian John Adolf, Raj B. Apte
-
Patent number: 10177434Abstract: Aspects of the disclosure provide for an antenna system. The antenna system includes a main reflector, a phased array feed, and a mechanical steering system. The phased array feed is configured to receive and/or transmit signals reflected off the main reflector and to electronically steer a transmitted signal on a first axis. The main reflector and the phased array feed are both attached to the mechanical steering system, and the mechanical steering system is configured to move the transmitted signal along a second axis.Type: GrantFiled: December 22, 2017Date of Patent: January 8, 2019Assignee: X Development LLCInventors: Sundararajan Sriram, Simon Scott, Jeffrey M. Gilbert
-
Patent number: 10168690Abstract: Multirobotic management can involve communications between a command or leader robot and one or more client or follower robots through a cloud computing system. In an example implementation, a leader robot can receive first sensory data captured by a first follower robot and second sensory data captured by a second follower robot, determine a command function based on at least one of the first sensory data and the second sensory data, and communicate with at least one of the first follower robot and the second follower robot based on the command function.Type: GrantFiled: October 28, 2016Date of Patent: January 1, 2019Assignee: X Development LLCInventors: Ryan Hickman, Chaitanya Gharpure
-
Patent number: 10162058Abstract: Methods and systems for detecting sensor orientation characteristics using marker-based localization are disclosed herein. In one aspect, a robotic device can: receive a map of a horizontal marker plane that includes mapped positions of a first marker and a second marker arranged in the horizontal marker plane; receive, from a sensor configured to scan a two-dimensional sensor plane, sensor data indicative of positions of the first and second markers relative to the sensor; determine measured positions of the first and second markers based on the sensor data and a current position of the sensor; determine a difference vector between a first vector that connects the mapped positions of the first and second markers and a second vector that connects the measured positions of the first and second markers; and determine, based on the difference vector, an orientation of the two-dimensional sensor plane relative to the horizontal marker plane.Type: GrantFiled: December 23, 2016Date of Patent: December 25, 2018Assignee: X Development LLCInventors: Daniel Shaffer, Dirk Holz
-
Patent number: 10160114Abstract: Example implementations may relate to methods and systems for determining a safe trajectory for movement of an object by a robotic system. According to these various implementations, the robotic system may determine at least first and second candidate trajectories for moving the object. For at least a first point along the first candidate trajectory, the robotic system may determine a predicted cost of dropping the object at the first point along the first candidate trajectory. And for at least a second point along the second candidate trajectory, the robotic system may determine a predicted cost of dropping the object at the second point along the second candidate trajectory. Then, based on these various determined predicted costs, the robotic system may select between the first and second candidates trajectories and may then move the object along the selected trajectory.Type: GrantFiled: October 19, 2017Date of Patent: December 25, 2018Assignee: X Development LLCInventor: Kevin William Watts
-
Patent number: 10162044Abstract: Disclosed herein are embodiments of a balloon-based positioning system and method. In one example embodiment, a system includes at least three balloons, with each balloon including a position-determining module (PDM) and a position-broadcasting module (PBM). Each PDM is configured for determining a position of the respective balloon and each PBM is configured for broadcasting a balloon signal containing balloon-positioning data of the respective balloon. The balloon-positioning data includes the determined position of the respective balloon and a corresponding time of broadcast.Type: GrantFiled: February 9, 2016Date of Patent: December 25, 2018Assignee: X Development LLCInventors: Richard Wayne DeVaul, Waleed Kadous, Eric Teller, Cliff Biffle, Edward Allen Keyes
-
Patent number: 10164476Abstract: Described herein are methods and systems for facilitating a wireless power handover. In particular, a controller may cause a first transmitter to provide electrical power to a receiver. The controller may then determine that a handover condition is met and may responsively facilitate a handover to a second transmitter. During this handover, the controller may engage in a phase-determination process to determine first and second phases at which the first and second transmitters should respectively provide electrical power to the receiver. Once determined, the controller may then cause the first and second transmitters to respectively provide electrical power to the receiver at the first and second phases and at substantially the same time. Subsequently, the controller may cause the first transmitter to no longer provide electrical power to the receiver and the second transmitter to continue to provide electrical power to the receiver, thereby completing the handover.Type: GrantFiled: December 6, 2016Date of Patent: December 25, 2018Assignee: X Development LLCInventors: Brian Adolf, Michael Grundmann, Eric Liu
-
Publication number: 20180362369Abstract: Systems and methods for extending life of an apparatus, such as a balloon, using electrolysis. A ballast liquid is carried or harvested and, when desired, is electrolyzed using an on-board electrolyzer to generate lift gas, rather than simply being dumped as traditional ballast. However, the ballast liquid may also be dumped, if necessary. A valve may be provided to enable safe dumping of the ballast liquid. The ballast liquid may be water, a water-methanol mixture, or other suitable ballast liquid. The ballast liquid may be stored in a container associated with the balloon prior to launch or may be harvested from the atmosphere while the balloon is in-flight. Features may be provided to maintain the ballast liquid in a liquid state. The lift gas mixture within the balloon is maintained non-flammable.Type: ApplicationFiled: June 14, 2017Publication date: December 20, 2018Applicant: X Development LLCInventors: Sergey Vichik, Daniel Bowen, Sherri Goldman, Richard Chad Bruns, Daniel Alex Luebke
-
Patent number: 10155273Abstract: Example implementations may relate to interactive object fabrication. In particular, a control system may receive model data defining a 3D shape of a physical object that is fabricable out of a substrate at a work site. The system may then direct a projection system to emit onto the substrate a projection illustrative of the 3D shape defined by the model data. Also, the system may transmit, to a robotic system, fabrication instructions that direct the robotic system to fabricate the physical object in accordance with the model data. subsequently, during fabrication of the physical object, the system may (i) receive progress data indicative of a portion of the physical object that has been fabricated from the substrate, and (ii) direct the projection system to update the projection of the 3D shape to remove a portion of the projection corresponding to the portion of the physical object that has been fabricated.Type: GrantFiled: May 19, 2016Date of Patent: December 18, 2018Assignee: X Development LLCInventors: Johan Jessen, Jeff Linnell, Kendra Byrne, Jonathan Proto, Brandon Kruysman