Patents Assigned to X. Development
  • Patent number: 10106257
    Abstract: Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload-release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: October 23, 2018
    Assignee: X Development LLC
    Inventors: William Graham Patrick, James Ryan Burgess, Andrew Conrad
  • Patent number: 10108194
    Abstract: An example system may include a vehicle, a sensor, and a control system that may determine a target location for an object carried by the vehicle. The control system may also determine a plurality of points defining a boundary of a volume to be occupied by the object at the target location. The plurality of points may be scannable in a sequence by the sensor to scan the volume. The control system may additionally determine a respective field of visibility to each respective point. Further, the control system may determine a path for the vehicle to follow to the target location. The respective field of visibility may intersect with at least a respective portion of the determined path such that each respective point is observable by the sensor along at least the respective portion of the determined path as the vehicle moves along the determined path to the target location.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 23, 2018
    Assignee: X Development LLC
    Inventor: Jared Russell
  • Patent number: 10107632
    Abstract: Systems and methods related to roadmaps for mobile robotic devices are provided. A computing device can receive a roadmap. The roadmap can include an intersection between first and second edges. The computing device can determine a transition curve between the first and second edges and includes first, second, and third curve segments. The first and second curve segments can connect at a first curve junction point. The second and third curve segments can connect at a second curve junction point. The first and third curve segments each include a segment of an Euler spiral and the second curve segment can be a circular curve segment having a fixed radius. The computing device can update the roadmap by replacing the intersection between the first and second edges with the transition curve. The computing device can provide the updated roadmap.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: October 23, 2018
    Assignee: X Development LLC
    Inventors: Geoffrey Lalonde, Peter Anderson-Sprecher
  • Patent number: 10099759
    Abstract: An autonomous submersible structure includes a cage for protecting cargo contained within a volume of the cage, two or more independently operated propellers, and a raised platform. The raised platform includes a plurality of sensors and computers that detect at least one of: water quality, water pressure, or objects in the vicinity of the cage. The raised platform includes a navigating system that controls a direction of travel of the cage based on feedback provided by the plurality of sensors and computers, and a power generator that provides power to the sensors, the navigating system, and the feeding mechanism. The autonomous submersible structure includes a ballast for counterbalancing the weight of the raised platform, wherein the navigating system controls the two or more independently operated propellers to alter the direction of travel of the cage, and wherein the raised platform is environmentally sealed and a portion of the raised platform is positioned above water level.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 16, 2018
    Assignee: X Development LLC
    Inventor: Rohinton Mehta
  • Patent number: 10099391
    Abstract: An example method is carried out in a warehouse environment having a plurality of inventory items located therein, each having a corresponding on-item identifier. The method involves determining a target inventory item having a target on-item identifier. The method also involves determining that a first inventory item having a first on-item identifier is loaded onto a first robotic device. The method further involves transmitting a request to verify the first on-item identifier. The method still further involves receiving data captured by a sensor of the second robotic device. The method yet further involves (i) analyzing the received data to determine the first on-item identifier, (ii) comparing the first on-item identifier and the target on-item identifier, and (iii) responsive to comparing the first on-item identifier and the target on-item identifier, performing an action.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 16, 2018
    Assignee: X Development LLC
    Inventors: Christopher Hance, Daniel Shaffer
  • Patent number: 10094219
    Abstract: Efficient energy storage is provided by using a working fluid flowing in a closed cycle including a ganged compressor and turbine, and capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. This system can operate as a heat engine by transferring heat from the hot side to the cold side to mechanically drive the turbine. The system can also operate as a refrigerator by mechanically driving the compressor to transfer heat from the cold side to the hot side. Heat exchange between the working fluid of the system and the heat storage fluids occurs in counter-flow heat exchangers. In a preferred approach, molten salt is the hot side heat storage fluid and water is the cold side heat storage fluid.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 9, 2018
    Assignee: X Development LLC
    Inventor: Robert B. Laughlin
  • Patent number: 10091496
    Abstract: The present disclosure relates to systems, devices, and methods for calibrating a light field projection system. One example system includes a projection unit operable to project a scanning sequence toward a screen having convex reflective elements. The scanning sequence is modulated according to a baseline intensity profile. The system also includes a calibration device disposed such that a portion of the scanning sequence is intercepted by the calibration device. The calibration device includes a first light detector arranged to detect an intercepted intensity profile. The calibration device also includes a second light detector arranged to detect a reflected portion of the scanning sequence as a measured intensity profile. The system further includes a control system. The control system is configured to determine an expected intensity profile and to modify operation of the light field projection system based on a comparison of the measured intensity profile to the expected intensity profile.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: October 2, 2018
    Assignee: X Development LLC
    Inventors: Richard DeVaul, Brian Adolf
  • Patent number: 10090786
    Abstract: While motors or generators stacked in series may allow for higher operating voltages, such motors or generators may also exhibit instability. To minimize instability, the motors or generators may be controlled to have an approximately equal current. An example motor system may include motor stacks connected in series, each motor stack exhibiting a respective stack voltage and a respective differential power (based on a difference in power between motors in the motor stack). A control system may average the stack voltages to generate an average stack voltage and generate a nominal stack power corresponding to each stack voltage. The control system may receive the differential powers, combine each differential power and nominal stack power for the respective motor stack to generate first and a second motor powers, and control each motor stack using the first and second motor powers.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 2, 2018
    Assignee: X Development LLC
    Inventors: Andrew David Goessling, Leo Francis Casey
  • Patent number: 10087000
    Abstract: Example pallet-conveyor systems may include a conveyor system configured with a delivery track arranged to move pallets to a delivery area, a recirculation loop, and a diverter mechanism. The system may include a computing system that selects an item for the recirculation loop based on future demand and causes a robotic device to maintain pallets of the selected item in the recirculation loop. The computing system may further receive an item request and determine that a requested item is available from the recirculation loop and responsively cause the diverter mechanism to divert the requested item from the recirculation loop to the delivery track. The computing system may also cause robotic devices to obtain and load pallets of remaining requested items onto the conveyer system for the delivery area, and cause pickers to remove one or more items from pallets at the delivery area in order to fulfill the item request.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: October 2, 2018
    Assignee: X Development LLC
    Inventor: John Zevenbergen
  • Patent number: 10086561
    Abstract: An assembly for manufacturing a balloon envelope includes a table component and a sealing component. The table component may include a first platform, a second platform, a third platform, and a lateral opening between the first and second platforms. The first and second platforms can receive a first sheet of material that forms a first gore of the balloon envelope and a second sheet of material that forms a second gore of the balloon envelope. At least a portion of the first platform may move relative to the third platform so as to allow for the tendon and the portion of the second sheet attached to the tendon to move toward the third platform. The sealing component may be configured to bond the first sheet to the second sheet in order to join the first and the second gores of the balloon envelope.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 2, 2018
    Assignee: X Development LLC
    Inventor: Daniel Henry Fourie
  • Patent number: 10083406
    Abstract: Examples described may enable consolidating pallets of items in a warehouse. An example method includes receiving real-time item information including pallet locations in a warehouse and inventory of items arranged on the pallets; based on the real-time item information, identifying a set of pallets of which at least one pallet includes less than a threshold quantity of a type of item; receiving real-time robotics information and determining, based on the real-time item and robotics information, an amount of time to condense the items on the set of pallets into a single pallet and a quantity of pallets that will become empty as a result of condensing the items; and, based on the amount of time being less than a threshold time and the quantity of pallets exceeding a threshold quantity of pallets, causing robotic devices to condense the items into the single pallet.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: September 25, 2018
    Assignee: X Development LLC
    Inventors: Christopher Hance, Daniel Shaffer
  • Patent number: 10082104
    Abstract: A heat engine system with pressure-regulating load-locks disposed between thermal medium storage containers and heat exchangers is disclosed. A load-lock connects one or more storage containers at atmospheric pressure to one or more heat exchangers at greater than or less than atmospheric pressure.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 25, 2018
    Assignee: X Development LLC
    Inventor: Raj B. Apte
  • Patent number: 10081102
    Abstract: An example system includes a transmission having a first plurality of gears and an extent of backlash. The system also includes a first motor connected to an input shaft of the transmission and a second motor connected to an output shaft of the transmission through a second plurality of gears. A first gear ratio of a first plurality of gears is greater than a second gear ratio of the second plurality of gears. The system may receive a command to change a direction of rotation of the output shaft from a first direction to a second direction. In response to the received command, the first motor may drive the transmission through a first portion of the extent of backlash deadband. The second motor may drive the transmission through a second portion of the extent of backlash deadband. The second portion may be greater than the first portion.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: September 25, 2018
    Assignee: X Development LLC
    Inventors: Ben Berkowitz, Jeffrey Bingham, Seth Gilbertson
  • Patent number: 10082045
    Abstract: Closed thermodynamic cycle systems, such as closed Brayton cycle systems, with regenerative heat exchangers are disclosed. Embodiments include dual regenerators and regenerators with buffer tank systems. Regenerators may be used instead of or in addition to one or more recuperators within the systems, and may be used as a means of gas-gas heat exchange for different streams of a working fluid.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: September 25, 2018
    Assignee: X Development LLC
    Inventors: Philippe Larochelle, Raj Apte
  • Patent number: 10079635
    Abstract: An example embodiment may involve receiving a request to provide unmanned aerial vehicle (UAV) based wireless coverage to a particular geographical location. Possibly in response to the request, a UAV may fly to the particular geographical location. A first wireless interface of the UAV may define a wireless coverage area that covers at least part of the particular geographical location. A second wireless interface of the UAV may establish a wireless backhaul link to a data network. The UAV may provide wireless data transfer services to at least one device in the particular geographical location, where the wireless data transfer services allow the device to exchange data communication with the data network via the UAV.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: September 18, 2018
    Assignee: X Development LLC
    Inventors: David Vos, Andrew Patton, Sean Mullaney, Behnam Motazed, Siegfried Zerweckh
  • Patent number: 10071856
    Abstract: An example system includes a robotic device deployed in a warehouse environment including a plurality of inventory items. The system also includes a camera coupled to the robotic device, configured to capture image data. The system also includes a computing system configured to receive the captured image data. The computing system is configured to, based on the received image data, generate a navigation instruction for navigation of the robotic device. The computing system is also configured to analyze the received image data to detect one or more on-item visual identifiers corresponding to one or more inventory items. The computing system is further configured to, for each detected visual identifier, (i) determine a warehouse location of the corresponding inventory item, (ii) compare the determined warehouse location to an expected location, and (iii) initiate an action based on the comparison.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: September 11, 2018
    Assignee: X Development LLC
    Inventors: Christopher Hance, Daniel Shaffer
  • Patent number: 10069562
    Abstract: A free space optical communication system transmits and receives optical signals in a colorless manner using an optical circulator. The system installs the optical circulator with a single mode (SM) fiber at port 1, a double clad (DC) fiber at port 2, and a multimode (MM) fiber at port 3. The system injects a first optical signal into a core of the SM fiber. The system then routes the first optical signal at port 1, using the optical circulator, into a SM core of the DC fiber via Port 2. Further, the system injects a second optical signal into a first cladding of the DC fiber. The system then routes the second optical signal at port 2, using the optical circulator, into the MM fiber via Port 3.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: September 4, 2018
    Assignee: X Development LLC
    Inventor: Chiachi Wang
  • Patent number: 10059052
    Abstract: A 3D printing process may form a 3D object by alternatingly forming layers from a liquid resin and a solid. For instance, when printing a 3D object, the 3D printer may at least partially cure a layer of liquid resin, and before the curing of the resin is complete, dip the semi-cured resin into a vat containing graphene powder so as to create a super strong 3D object. As another example, each semi-cured resin layer could be pressed into a vat of fiberglass such that the fiberglass is coupled to the semi-cured resin. The resin may then be allowed to finish curing before the next layer of resin is formed. In other embodiments, this process could be used to embed sensors in 3D printed objects.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: August 28, 2018
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Brandon Kruysman, Jonathan Proto
  • Patent number: 10059003
    Abstract: In one aspect, a method is described. The method may include providing an end effector tool of a robotic device configured to perform a task on a work surface within a worksite coordinate frame. The method may further include providing first location data indicating a first location of the end effector tool with respect to the work surface, providing second location data indicating a second location of the end effector tool within the worksite coordinate frame, and providing third location data indicating a third location of the end effector tool within the worksite coordinate frame. The method may further include tracking the location of the end effector tool based on the first, second, and third location data, and, based on the tracked location of the tool, instructing the robotic device to manipulate the end effector tool to perform a task on the work surface.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: August 28, 2018
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Marek Michalowski, Anthony Sean Jules
  • Patent number: D831124
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: October 16, 2018
    Assignee: X Development LLC
    Inventors: Nathan Treat, Thomas Van Alsenoy, Jérôme Sicard, Campbell Mclaren