Patents Assigned to Xerox
  • Patent number: 11697296
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: July 11, 2023
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Linn C. Hoover, Patrick Jun Howe, Joseph C. Sheflin, Robert Jian Zhang, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Erwin Ruiz, Emmett James Spence, Rachel Lynn Tanchak, Kareem Tawil, Carlos M. Terrero, Megan Zielenski
  • Publication number: 20230212405
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles and a polymer material comprising at least one thermoplastic polymer and at least one thermally curable polymer precursor. At a sufficient temperature, the at least one thermally curable polymer precursor may undergo a reaction, optionally also undergoing a reaction with the piezoelectric particles, and form an at least partially cured printed part. The piezoelectric particles may be mixed with the polymer material and remain substantially non-agglomerated when combined with the polymer material.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 6, 2023
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET
  • Patent number: 11691435
    Abstract: A method and system for enabling a patterned liquid, can involve creating a heat image on an imaging blanket by selectively heating the imaging blanket with a digitally controlled energy source, and subjecting the heat image to a selective deposition of a fountain solution material to enable vapor condensation on unheated areas and vapor rejection from heated areas to generate a fountain material image.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: July 4, 2023
    Assignee: Xerox Corporation
    Inventors: Janos Veres, David K. Biegelsen, Gregory B. Anderson, Joerg Martini, Joanne L. Lee
  • Patent number: 11695894
    Abstract: A system and method provide for automated evaluation of reference point pairs. For each of a set of reference point pairs in an input color space, a straight line connecting the reference points is sampled to generate a set of sampled points. Each of the set of sampled points in the input color space is converted to a sampled point in an output color space. For each of a set of color separations in the output color space, discontinuities are identified, based on the set of sampled points in the output color space. Candidate reference point pairs are identified in the set of reference point pairs for which at least one discontinuity is identified. The candidate reference point pairs can be validated by printing test sweeps, which are each derived from a respective set of sampled points in the output color space, and identifying contour artifacts in the printed test sweeps.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: July 4, 2023
    Assignee: Xerox Corporation
    Inventors: Guo-Yau Lin, Eliud Robles Flores, David R Stookey, Varun Sambhy
  • Patent number: 11692068
    Abstract: A material for three-dimensional printing including at least one of a functionalized silicone polymer, a functionalized silica particle, or a combination thereof; wherein the functionalized silicone polymer is functionalized with a member of the group consisting of a carboxylic acid, an amine, and combinations thereof; and wherein the functionalized silica particle is functionalized with a member of the group consisting of a carboxylic acid, an amine, and combinations thereof. A process for preparing the three-dimensional printing material. A process for three-dimensional printing use of the material.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: July 4, 2023
    Assignee: Xerox Corporation
    Inventors: Cristina Resetco, Valerie M. Farrugia
  • Publication number: 20230209699
    Abstract: A humidity-adjusted power supply includes a power supply circuit (e.g., relatively higher-voltage circuit) connected to a printed circuit board. The power supply circuit is adapted to provide output voltage to a voltage load. The humidity-adjusted power supply also includes a humidity control circuit (e.g., relatively lower-voltage circuit) connected to the printed circuit board adjacent the power supply circuit. The humidity control circuit outputs a heater control signal to a heater that is also connected to the printed circuit board. The heater is in a location to receive the heater control signal from the humidity control circuit. The power supply circuit and the humidity control circuit are positioned, relative to each other, on the printed circuit board to experience the same environmental conditions.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Applicant: Xerox Corporation
    Inventor: Hendrikus Adrianus Anthonius Verheijen
  • Patent number: 11684972
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus has a thermally insulative layer between a platform on which an ejection head ejects drops of melted metal and a X-Y translation mechanism on which the platform is moved within an X-Y plane opposite the ejection head. The apparatus also includes a housing having an internal volume in which the platform and X-Y translation mechanism are located. In one embodiment, the thermally insulative layer is a plurality of spheres made of a thermally insulative material such as a ceramic made of zirconium dioxide or zirconium oxide. The thermally insulative layer protects the X-Y mechanism while the housing helps keep the surface temperature of the object being formed on the platform in an optimal range for bonding of the ejected melted metal drops to the object's surface.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: June 27, 2023
    Assignee: Xerox Corporation
    Inventor: Douglas K. Herrmann
  • Patent number: 11685150
    Abstract: A coefficient of friction (COF) sensor on a carrier roll surface wetted with fountain solution transferred from an imaging member measures COF of the wetted carrier roll surface in real-time, even between or during printing operations. The transferred fountain solution may be concentrated and/or chilled to solidify before the measurement. The measured COF is used in a feedback loop to actively control the fountain solution layer thickness by adjusting the volumetric feed rate of fountain solution added onto the imaging member surface during an imaging or other printing operation to reach a desired uniform thickness for the printing. This fountain solution monitoring system may be fully automated.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: June 27, 2023
    Assignee: Xerox Corporation
    Inventors: Seemit Praharaj, Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Jason M. Lefevre
  • Patent number: 11687304
    Abstract: The present disclosure discloses methods and systems for allowing a user to add content from an external medium to a job submitted at a multi-function device. The method includes receiving a job at the multi-function device for a pre-defined operation. The method further includes providing a user interface at the multi-function device including an option for adding the content from the external medium. Once the option is selected, a code generated corresponding to the job is displayed at the multi-function device. Upon scanning the code, the user selects the content to be added and provides details of the content to be added from the external medium. Finally, the selected content is added in the job resulting in a final output.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: June 27, 2023
    Assignee: Xerox Corporation
    Inventors: Srinivasarao Bindana, Ashok Jason Vedaraj
  • Publication number: 20230193471
    Abstract: Two-dimensional conductive nanoparticles may facilitate preparation of metal coatings prepared via electroless plating. Articles having a metal coating may comprise: a polymer body, and a metal coating on at least a portion of an outer surface of the polymer body. The metal coating comprises a plating metal and overlays a plurality of two-dimensional conductive nanoparticles and a catalyst metal.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Xerox Corporation
    Inventors: Nan-Xing HU, Yulin WANG, Edward G. ZWARTZ
  • Publication number: 20230196048
    Abstract: Access is provided to a variable data printing app and a code detection app on a computer server. The variable data printing app is adapted to add machine-readable code to printable items and create a decoder app capable of decoding the machine-readable code. The code detection app is adapted to receive user identification information and transmit the user identification information to designer devices. The printable items are printed as printed products. The designer devices validate a user device based on the validity of the user identification information. In response, the variable data printing app is adapted to transmit the decoder app to validated user devices. The code detection app, operating on the user device, is adapted to decode the machine-readable code in user-acquired images into an optional secure link with the designer devices.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Xerox Corporation
    Inventors: Patricia J. Donaldson, Stuart Schweid, Michael B. Monahan, Roger L. Triplett, Douglas R. Taylor
  • Publication number: 20230199132
    Abstract: The disclosure discloses methods and systems for securing documents submitted for scanning at a device such as a multi-function device. The method includes scanning a document received from a user. A user interface is provided to the user to define a document type and to further define an access level for accessing the scanned document. Then, scanned data is generated. The scanned data is encoded based on a unique identity of the device and based on the access level such that the scanned data is accessible by the user and/or by one or more other users according to the defined access level. Finally, the scanned document is generated. Later when the scanned document is accessed by any user, details of the user accessing the scanned document is matched with details added in the encoded scanned data. Based on matching, the user is allowed to access the scanned document.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: XEROX CORPORATION
    Inventors: Srinivasarao Bindana, Ashok Jason Vedaraj, Shalini Kondore
  • Publication number: 20230191487
    Abstract: A metal component is disclosed. The metal component has a first dimension greater than 5 mm, and a second dimension greater than 5 mm. The metal component may include where the alloy includes titanium, aluminum, vanadium, carbon, nitrogen, and oxygen. The alloy may include zirconium, titanium, copper, nickel, and beryllium. The metal component is not die-cast, melt-spun, or forged. An ejector and a method for jetting the metal component is also disclosed.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: XEROX CORPORATION
    Inventors: Mariusz Tadeusz MIKA, Paul J. MCCONVILLE, Peter M. GULVIN, Colin G. FLETCHER, Daimon HELLER, Miranda MOSCHEL
  • Publication number: 20230193054
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions that are extrudable and comprise a plurality of piezoelectric particles and a plurality of carbon nanomaterials dispersed in at least a portion of a polymer material. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer material. The polymer material may comprise at least one thermoplastic polymer, optionally further containing at least one polymer precursor. The compositions may define an extrudable material that is a composite having a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes using the compositions may comprise forming a printed part by depositing the compositions layer-by-layer.
    Type: Application
    Filed: March 22, 2022
    Publication date: June 22, 2023
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET
  • Patent number: 11681477
    Abstract: A processor of a printing apparatus obtains and maintains the media type of print media located in a media storage component of the printing apparatus. The processor also accesses a reference file containing different printing speed limits for different media types. The reference file can be maintained in an electronic storage component of the printing apparatus. The processor uses the reference file to determine an appropriate printing speed limit for a printing engine of the printing apparatus that corresponds to the media type of the print media in the media storage component. Further, a user interface of the printing apparatus can display an overspeed indicator, and/or the processor can stop the printing from occurring, based on a job-set printing speed of the printing engine being above the printing speed limit.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: June 20, 2023
    Assignee: Xerox Corporation
    Inventors: Barry K. Ayash, Randy R. Sprague, Mark A. Rule
  • Publication number: 20230182363
    Abstract: Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles dispersed in at least a portion of a polymer matrix comprising first polymer material and a sacrificial material, the sacrificial material being removable from the polymer matrix to define a plurality of pores in the polymer matrix. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer matrix. The sacrificial material may comprise a second polymer material. The compositions may define a composite having a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes may comprise forming a printed part by depositing the compositions layer-by-layer and introducing porosity therein.
    Type: Application
    Filed: March 22, 2022
    Publication date: June 15, 2023
    Applicants: XEROX CORPORATION, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Sarah J. VELLA, Alexandros VASILEIOU, Yujie ZHU, Edward G. ZWARTZ, Chantal PAQUET
  • Publication number: 20230182201
    Abstract: A method includes ejecting a plurality of drops of a build material from a nozzle of a 3D printer. The build material cools and solidifies after being ejected to form a 3D object. The method also includes controlling an oxidation of the drops, the 3D object or both to create different oxidation levels in first and second portions of the 3D object.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 15, 2023
    Applicant: XEROX CORPORATION
    Inventors: Viktor Sukhotskiy, David A. Mantell, Palghat S. Ramesh, Kareem Tawil, Alexander J. Fioravanti, Dinesh Krishna Kumar Jayabal
  • Publication number: 20230185219
    Abstract: A transfer member for a printing device includes a shaft, a rigid cylindrical core member, mounted on the shaft, an outer layer supported on the rigid cylindrical core member, and optionally a conformable intermediate layer, spacing the cylindrical core member from the outer layer. The outer layer defines an outer surface of the transfer member, and is configured for receiving a toner image thereon. The cylindrical core and outer layer have a same axis of rotation as the shaft. The rigid cylindrical core and/or the conformable intermediate layer, where present may be electrically biased, relative to a photoconductor drum of the printing device.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Applicant: Xerox Corporation
    Inventors: Eliud Robles Flores, Paul F. Sawicki, Douglas A. Gutberlet, Varun Sambhy
  • Patent number: 11673198
    Abstract: A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer use positional data from an encoder to control the actuators to move the ejector and a platform on which the object is formed relative to one another to form edges of the feature.
    Type: Grant
    Filed: January 30, 2021
    Date of Patent: June 13, 2023
    Assignee: Xerox Corporation
    Inventors: Jack G. Elliot, Rachel L. Tanchak, Derek A. Bryl, Piotr Sokolowski, Erwin Ruiz, David A. Mantell, Brendan McNamara, Peter M. Gulvin, Christopher T. Chungbin
  • Patent number: RE49572
    Abstract: The present disclosure provides processes for producing images with toner particles. In embodiments, toner particles of a certain diameter in size are applied to a substrate as an incomplete monolayer, and then fused to form an image that is a complete monolayer and possesses a thickness less than the diameter of the particles utilized to form the image.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: July 4, 2023
    Assignee: XEROX CORPORATION
    Inventors: Richard P. N. Veregin, Eric Rotberg, Edward Graham Zwartz, Suxia Yang, Daryl W. Vanbesien, Cuong Vong, Karen Ann Moffat