Patents Assigned to Xponent Photonics Inc
-
Patent number: 7269317Abstract: An optical apparatus comprises a substrate, first and second transmission optical elements on the substrate, and an optical component (such as an isolator) and focusing optical element(s) on the substrate between the transmission elements. Transmission elements may include planar waveguide(s) formed on the substrate and/or optical fiber(s) mounted in groove(s) on the substrate. The focusing element(s) may include: gradient-index (GRIN) segment(s) mounted on the substrate or spliced onto a fiber, a focusing segment(s) of a planar waveguide, ball lens(es), aspheric lens(es), and/or Fresnel lens(es). A dual-lens optical assembly comprises a pair of GRIN segments secured to a substrate in one or more grooves, and may be formed from a common length of GRIN optical medium. An optical component (such as an isolator) is positioned between the paired GRIN segments, and optical power is transmitted by the dual-lens assembly between planar waveguide(s) and/or fiber(s) through the optical component.Type: GrantFiled: August 29, 2003Date of Patent: September 11, 2007Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
-
Patent number: 7233713Abstract: An optical apparatus comprises a semiconductor optical device waveguide formed on a semiconductor substrate, and an integrated end-coupled waveguide formed on the semiconductor substrate. The integrated waveguide may comprise materials differing from those of the device waveguide and the substrate. Spatially selective material processing may be employed for first forming the optical device waveguide on the substrate, and for subsequently depositing and forming the integrated end-coupled waveguide on the substrate. Spatially selective material processing enables accurate spatial mode matching and transverse alignment of the waveguides, and multiple device waveguides and corresponding integrated end-coupled waveguides may be fabricated concurrently on a common substrate on a wafer scale.Type: GrantFiled: January 9, 2006Date of Patent: June 19, 2007Assignee: Xponent Photonics Inc.Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Charles I. Grosjean, Hao Lee, Franklin G. Monzon, Katrina H. Nguyen
-
Patent number: 7227880Abstract: A grating-stabilized semiconductor laser comprises a semiconductor laser gain medium, an integrated low-index waveguide, and a waveguide grating segment providing optical feedback for laser oscillation. The laser may be adapted for multi-mode or single-mode operation. A multiple-mode laser may oscillate with reduced power and/or wavelength fluctuations associated with longitudinal mode wavelength shifts, relative to Fabry-Perot lasers lacking gratings. A single-mode laser may include a compensator, wavelength reference, and detector for generating an error signal, and a feedback mechanism for controlling the compensator for maintaining the laser wavelength locked to the reference. The laser may include means for altering, enhancing, tuning, and/or stabilizing the waveguide grating reflectivity spectral profile. The laser may be adapted for optical transverse-coupling to another waveguide.Type: GrantFiled: May 26, 2005Date of Patent: June 5, 2007Assignee: Xponent Photonics Inc.Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
-
Patent number: 7228032Abstract: The launch conditions (injected beam size/shape, radial/angular offset from the multimode fiber axis) may be varied to preferentially excite certain transverse modes of multimode optical fiber. To reduce multimode dispersion in the fiber, modes are excited having smaller amplitudes near fiber index defects. Launch conditions may be controlled using a substrate with grooves for launching and receiving fibers, a planar waveguide formed on a substrate along with a groove for aligning the multimode fiber and waveguide, or free-space optical components. A waveguide may provide the desired injected beam size/shape. Spatially selective material processing enables accurate alignment of the groove(s) (and hence the fiber(s) therein), yielding the desired radial/angular offsets.Type: GrantFiled: January 12, 2005Date of Patent: June 5, 2007Assignee: Xponent Photonics Inc.Inventors: Henry A. Blauvelt, David W. Vernooy
-
Patent number: 7223025Abstract: An optical device assembly comprises a substrate with a component and fiber groove thereon. A segment of optical fiber is engaged with the fiber groove, which positions the fiber segment for optical coupling with a component on the substrate. A fiber retainer maintains the fiber segment in engagement with the groove. The fiber retainer may be secured to the substrate with adhesive means. Recessed regions formed on the substrate/retainer are filled with adhesive means, forming retaining members. Alternatively, the fiber retainer comprises a resilient member engaged with the device substrate and biased so as to urge the fiber segment into the groove. The resilient member may be variously configured and/or adapted for enhancing engagement of the fiber segment with the fiber groove. Either embodiment may include a housing, which may be variously configured and/or adapted for engaging a mating fiber-optic connector, providing fiber pigtail(s), mechanical splicing, and so forth.Type: GrantFiled: June 29, 2005Date of Patent: May 29, 2007Assignee: Xponent Photonics Inc.Inventors: Albert M. Benzoni, Joel S. Paslaski, Peter C. Sercel
-
Patent number: 7184643Abstract: A multiple-core planar optical waveguide comprises: a substantially planar waveguide substrate; a lower waveguide core; an upper waveguide core; lower cladding between the substrate and the lower waveguide core; and upper cladding above the upper waveguide core. At least a portion the upper waveguide core is positioned above and substantially parallel to at least a portion of the lower waveguide core. The lower and upper claddings have refractive indices less than refractive indices of the lower and upper waveguide cores. The width of the lower waveguide core is substantially larger than its thickness along at least a portion of its length, and is substantially flat along that portion of its length, thereby yielding a substantially flat surface for forming at least a portion of the upper waveguide core.Type: GrantFiled: April 29, 2004Date of Patent: February 27, 2007Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
-
Patent number: 7164838Abstract: A multiple-core optical waveguide comprises: a substrate; lower and upper waveguide core layers; a waveguide core between the upper and lower waveguide core layers; upper and lower cladding; and middle cladding between the upper and lower waveguide core layers substantially surrounding the waveguide core. Each of the lower, middle, and upper claddings has a refractive index less than refractive indices of the lower waveguide core layer, the upper waveguide core layer, and the waveguide core. Along at least a given portion of the optical waveguide, the upper and lower waveguide core layers extend bilaterally substantially beyond the lateral extent of a propagating optical mode supported by the optical waveguide, the lateral extent of the supported optical mode being determined at least in part by the width of the waveguide core along the given portion of the optical waveguide.Type: GrantFiled: February 15, 2005Date of Patent: January 16, 2007Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, David W. Vernooy
-
Patent number: 7164825Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.Type: GrantFiled: January 9, 2006Date of Patent: January 16, 2007Assignee: Xponent Photonics Inc.Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
-
Patent number: 7158702Abstract: Discrete first and second optical transmission subunits are formed each having a corresponding transmission optical waveguide with a corresponding optical junction region. The first transmission optical waveguide is a planar optical waveguide formed on a substrate. The first transmission optical waveguide or the second transmission optical waveguide is adapted for enabling substantially adiabatic transverse-transfer of optical power between the optical waveguides at the respective optical junction regions. The first and second optical transmission subunits are assembled together to form an optical apparatus.Type: GrantFiled: January 17, 2006Date of Patent: January 2, 2007Assignee: Xponent Photonics Inc.Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
-
Patent number: 7148465Abstract: A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.Type: GrantFiled: January 31, 2006Date of Patent: December 12, 2006Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, David W. Vernooy, Hao Lee
-
Patent number: 7142772Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.Type: GrantFiled: April 11, 2006Date of Patent: November 28, 2006Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, Joel S. Paslaski, David W. Vernooy
-
Patent number: 7136564Abstract: Formation of a substantially flat upper cladding surface over a waveguide core facilitates transverse-coupling between assembled waveguides, and/or provides mechanical alignment and/or support. An embedding medium may be employed for securing optical assemblies and protecting optical surfaces thereof. Structural elements fabricated with a low-profile core may be employed for providing mechanical alignment and/or support, aiding in the encapsulation process, and so forth.Type: GrantFiled: December 9, 2005Date of Patent: November 14, 2006Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Guido Hunziker
-
Patent number: 7130509Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.Type: GrantFiled: November 16, 2004Date of Patent: October 31, 2006Assignee: Xponent Photonics IncInventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
-
Patent number: 7106917Abstract: A resonant optical modulator comprises a transmission fiber-optic waveguide, a circumferential-mode optical resonator transverse-coupled thereto, a modulator optical component transverse-coupled to the circumferential-mode resonator, and a modulator control component. A control signal applied to the modulator optical component through the modulator control component alters the round-trip optical loss of the circumferential-mode resonator, thereby altering the transmission of a resonant optical signal through the transmission fiber-optic waveguide. The modulator optical element may comprise an open waveguide or a closed waveguide (i.e., resonator). The resonator round-trip optical loss may be altered by altering the optical absorption/scattering of the modulator optical component, by altering the amount of optical power transfer between the resonator and the modulator optical component, or by altering an optical resonance frequency of a resonant modulator optical component.Type: GrantFiled: December 21, 2001Date of Patent: September 12, 2006Assignee: Xponent Photonics IncInventors: Oskar J. Painter, Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
-
Patent number: 7095928Abstract: An optical apparatus comprises an optical waveguide, a bottom surface and walls formed on a first substrate and defining a detection volume with an upper opening, and a photodetector active area formed on a photodetector substrate. The bottom surface may be provided with a reflective coating. The waveguide is positioned relative to the detection volume so that light emerging from an end face of the waveguide is received within the detection volume. The detector substrate is mounted on the first substrate so as to cover the upper opening of the detection volume with the active area exposed to the detection volume. The optical waveguide may be formed on the first substrate along with the detection volume, or the optical waveguide may be formed on a separate waveguide substrate, and the waveguide substrate assembled with the first substrate.Type: GrantFiled: November 25, 2003Date of Patent: August 22, 2006Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
-
Publication number: 20060165373Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.Type: ApplicationFiled: April 11, 2006Publication date: July 27, 2006Applicant: Xponent Photonics IncInventors: Henry Blauvelt, Joel Paslaski, David Vernooy
-
Patent number: 7050681Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.Type: GrantFiled: May 25, 2005Date of Patent: May 23, 2006Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
-
Patent number: 7031575Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.Type: GrantFiled: October 9, 2003Date of Patent: April 18, 2006Assignee: Xponent Photonics IncInventors: Henry A. Blauvelt, Joel S. Paslaski, David W. Vernooy
-
Patent number: 7031577Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.Type: GrantFiled: November 16, 2004Date of Patent: April 18, 2006Assignee: Xponent Photonics IncInventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
-
Patent number: 6999671Abstract: A method for fabricating a multi-layer laterally-confined dispersion-engineered optical waveguide which may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals.Type: GrantFiled: November 16, 2004Date of Patent: February 14, 2006Assignee: Xponent Photonics IncInventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala