Patents Assigned to Xponent Photonics Inc
  • Patent number: 7130509
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: October 31, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 7106917
    Abstract: A resonant optical modulator comprises a transmission fiber-optic waveguide, a circumferential-mode optical resonator transverse-coupled thereto, a modulator optical component transverse-coupled to the circumferential-mode resonator, and a modulator control component. A control signal applied to the modulator optical component through the modulator control component alters the round-trip optical loss of the circumferential-mode resonator, thereby altering the transmission of a resonant optical signal through the transmission fiber-optic waveguide. The modulator optical element may comprise an open waveguide or a closed waveguide (i.e., resonator). The resonator round-trip optical loss may be altered by altering the optical absorption/scattering of the modulator optical component, by altering the amount of optical power transfer between the resonator and the modulator optical component, or by altering an optical resonance frequency of a resonant modulator optical component.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 12, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
  • Patent number: 7095928
    Abstract: An optical apparatus comprises an optical waveguide, a bottom surface and walls formed on a first substrate and defining a detection volume with an upper opening, and a photodetector active area formed on a photodetector substrate. The bottom surface may be provided with a reflective coating. The waveguide is positioned relative to the detection volume so that light emerging from an end face of the waveguide is received within the detection volume. The detector substrate is mounted on the first substrate so as to cover the upper opening of the detection volume with the active area exposed to the detection volume. The optical waveguide may be formed on the first substrate along with the detection volume, or the optical waveguide may be formed on a separate waveguide substrate, and the waveguide substrate assembled with the first substrate.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: August 22, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20060165373
    Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.
    Type: Application
    Filed: April 11, 2006
    Publication date: July 27, 2006
    Applicant: Xponent Photonics Inc
    Inventors: Henry Blauvelt, Joel Paslaski, David Vernooy
  • Patent number: 7050681
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: May 23, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7031575
    Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 18, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Joel S. Paslaski, David W. Vernooy
  • Patent number: 7031577
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: April 18, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 6999671
    Abstract: A method for fabricating a multi-layer laterally-confined dispersion-engineered optical waveguide which may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: February 14, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 6992276
    Abstract: A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 31, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Hao Lee
  • Patent number: 6987913
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: January 17, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6985646
    Abstract: An optical apparatus comprises a semiconductor optical device waveguide formed on a semiconductor substrate, and an integrated end-coupled waveguide formed on the semiconductor substrate. The integrated waveguide may comprise materials differing from those of the device waveguide and the substrate. Spatially selective material processing may be employed for first forming the optical device waveguide on the substrate, and for subsequently depositing and forming the integrated end-coupled waveguide on the substrate. Spatially selective material processing enables accurate spatial mode matching and transverse alignment of the waveguides, and multiple device waveguides and corresponding integrated end-coupled waveguides may be fabricated concurrently on a common substrate on a wafer scale.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: January 10, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Charles I. Grosjean, Hao Lee, Franklin G. Monzon, Katrina H. Nguyen
  • Patent number: 6981806
    Abstract: A method for micro-hermetic packaging of an optical device comprises: forming a micro-hermetic cavity on a substrate; providing a transmission optical waveguide transferring optical power between the interior and the exterior of the micro-hermetic cavity; fabricating or mounting at least one optical device within the micro-hermetic cavity; enabling optical power transfer between the optical device and the transmission optical waveguide; and sealing the optical device within the micro-hermetic cavity. The micro-hermetic cavity may be fabricated of a size comparable to the optical device, and many such cavities may be simultaneously fabricated on a single substrate using wafer-scale processing. The transmission optical waveguide, electrical feed-throughs, and/or other monitoring/controlling components may be provided with the micro-hermetic cavity on the same substrate, or as a separate component and/or on a separate substrate.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: January 3, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Albert M. Benzoni, Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6975798
    Abstract: Formation of a substantially flat upper cladding surface over a waveguide core facilitates transverse-coupling between assembled waveguides, and/or provides mechanical alignment and/or support. An embedding medium may be employed for securing optical assemblies and protecting optical surfaces thereof. Structural elements fabricated with a low-profile core may be employed for providing mechanical alignment and/or support, aiding in the encapsulation process, and so forth.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: December 13, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Guido Hunziker
  • Patent number: 6970623
    Abstract: A fiber-optic-taper loop probe includes first and second fiber segments, first and second tapering segments, and a center taper segment. In a preferred embodiment, first and second fiber segments are about 125 ?m in diameter, and the center taper segment has a substantially constant diameter of about 2-5 ?m. The fiber-optic taper forms a loop, the center taper segment remaining substantially straight and opposite the crossing point of the loop. The loop is secured to a support structure to maintain its shape and facilitate positioning relative to an optical component to be tested. The fiber segments may be connected to an optical characterization system including one or more light sources, lasers, detectors, spectrometers, etc. The geometry of the loop enables transverse-optical-coupling of the loop probe with an optical component without undesirable contact between other portions of the loop probe and other portions of the optical component and/or substrate.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: November 29, 2005
    Assignee: Xponent Photonics Inc
    Inventor: David W. Vernooy
  • Patent number: 6959123
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: October 25, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala
  • Patent number: 6942397
    Abstract: A packaged fiber-coupled optical device comprises an alignment housing with a fiber retainer, optical fiber segment(s), and optical component(s) (on substrate(s) with fiber groove(s)). Upon assembly the protruding end(s) of the fiber segment(s) is/are positioned against the fiber retainer, and the fiber groove(s) is/are aligned with the protruding end(s) of the fiber segment(s). The fiber retainer urges the protruding end(s) of the fiber segment(s) into the fiber groove(s). The fiber groove(s) position the protruding end(s) of the optical fiber(s) seated therein for optical coupling with optical component(s). The alignment housing and/or a fiber subassembly may be configured for engaging a mating fiber-optic connector.
    Type: Grant
    Filed: July 24, 2004
    Date of Patent: September 13, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Albert M. Benzoni, Mark E. Temple, Joel S. Paslaski, Henry A. Blauvelt
  • Patent number: 6917636
    Abstract: A grating-stabilized semiconductor laser comprises a semiconductor laser gain medium, an integrated low-index waveguide, and a waveguide grating segment providing optical feedback for laser oscillation. The laser may be adapted for multi-mode or single-mode operation. A multiple-mode laser may oscillate with reduced power and/or wavelength fluctuations associated with longitudinal mode wavelength shifts, relative to Fabry-Perot lasers lacking gratings. A single-mode laser may include a compensator, wavelength reference, and detector for generating an error signal, and a feedback mechanism for controlling the compensator for maintaining the laser wavelength locked to the reference. The laser may include means for altering, enhancing, tuning, and/or stabilizing the waveguide grating reflectivity spectral profile. The laser may be adapted for optical transverse-coupling to another waveguide.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: July 12, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6907169
    Abstract: An optical signal may be received into orthogonal linearly polarized modes of a transmission optical waveguide, the transmission waveguide including first and second transverse-coupling segments thereof. Optical signal polarized along one polarization direction may be substantially completely transferred from the transmission waveguide into a first transverse-coupled waveguide, the first transverse-coupled waveguide being optically transverse-coupled to the first transverse-coupling segment of the transmission waveguide. Optical signal polarized along the other polarization direction may be substantially completely transferred from the transmission waveguide into a second transverse-coupled waveguide, the second transverse-coupled waveguide being optically transverse-coupled to the second transverse-coupling segment of the transmission waveguide. The optical signals carried by the first and second transverse-coupled waveguides may be combined into a single waveguide.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: June 14, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Kerry J. Vahala, Peter C. Sercel, Oskar J. Painter, David W. Vernooy, David S. Alavi
  • Patent number: 6891997
    Abstract: A fiber-ring optical resonator comprises a transverse segment of an optical fiber differing from adjacent segments in at least one physical property (e.g., diameter, density, refractive index, chemical composition, etc) so that it may support a resonant circumferential optical mode and enable evanescent optical coupling between the circumferential mode and an optical mode of a second optical element. The resonator may be fabricated with alignment structure(s) for enabling passive alignment of the second optical element for evanescent coupling, and/or with structure for suppressing undesired modes and/or resonances. A fiber-ring resonator may form a portion of a resonant optical filter or modulator. A plurality of optically-coupled fiber-ring resonators (formed on one or more fibers) may provide tailored spectral properties.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 10, 2005
    Assignee: Xponent Photonics Inc.
    Inventors: Peter C. Sercel, Kerry J. Vahala, Guido Hunziker, David W. Vernooy, Robert B. Lee
  • Patent number: 6891996
    Abstract: An alignment device includes an alignment member with one or more waveguide-alignment grooves, resonator alignment grooves, and/or an alignment groove for a second optical element such as a modulator. The various alignment grooves reliably establish and stably maintain evanescent optical coupling between the optical elements positioned therein. A method for assembling a resonant optical power control device may include: fabricating an alignment member with the alignment grooves; positioning and securing the optical elements in corresponding alignment grooves for optical coupling therebetween. Alignment grooves in the substrate and/or in one or more of the optical elements are fabricated at proper depths and positions and preferably with mating grooves and/or flanges to enable optical coupling without extensive active alignment procedures.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 10, 2005
    Assignee: Xponent Photonics Inc.
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker, Robert B. Lee, Oskar J. Painter