Abstract: The self condensation of monovinyl aromatic compounds to acyclic dimers, the cross-reaction of monovinyl aromatic compounds with olefins in the presence of acid catalysts to produce cyclialkylated aromatic compounds, and the production of cyclialkylated aromatic compounds by reaction of olefins with acyclic dimers of monovinyl aromatic compounds in the presence of acid catalysts is improved by employing a tetrahydrothiophene 1,1-dioxide solvent.
Abstract: Catalyst supports, catalysts, method for the preparation thereof, and dimerization processes therewith are provided. Catalyst supports consist essentially of potassium carbonate with a crush strength of at least 5 pounds and at least one carbonaceous compound. Catalysts consist essentially of at least one elemental alkali metal deposited on the novel catalyst supports. Optionally, the catalysts further consist essentially of at least one promoter selected from the group consisting of elemental copper, elemental cobalt, and finely divided stainless steel.
Abstract: A process for oligomerizing alpha-olefins comprising contacting in a reactor zone under reaction conditions: (a) alpha-olefins having at least three carbon atoms; (b) an alkyl aluminum bromine or iodine compound having the formula R.sub.3 Al.sub.2 X.sub.3 or R.sub.n AlX.sub.3-n, wherein n is 1 or 2; R is an hydrocarbyl group and X is a reactive halogen selected from bromine and iodine; and (c) a cocatalyst which is (i) bromine, (ii) iodine, (iii) hydrocarbyl bromide having at least one halogen group reactive with said aluminum compound or (iv) hydrocarbyl iodide having at least one halogen group reactive with said aluminum compound.
Type:
Grant
Filed:
September 8, 1983
Date of Patent:
June 10, 1986
Assignee:
Uniroyal Chemical Company, Inc.
Inventors:
Frederick C. Loveless, Aspet V. Merijanian, David J. Smudin, Walter Nudenberg
Abstract: An apparatus for analyzing the biomechanical behaviour of the cardiac muscle and for diagnosing pathological conditions of the heart. The apparatus measures and records the rise and fall of intra-ventricular pressure monitored by a transducer installed in a cardiac catheter or in an arterial probe. The pressure versus time recordings during both the systolic and diastolic phases are mathematically analyzed, and two parameters indicative of the biomechanical conditions of the muscle are derived. The parameters are then plotted against each other on a map in which diagnostic zones of various normal and pathological heart conditions are delineated.
Abstract: Aliphatic olefinic hydrocarbons are isomerized in the presence of a catalyst consisting essentially of elemental chromium or a chromium compound and an aluminum phosphate support wherein the phosphorus/aluminum atomic ratio of the support is less than 1.
Type:
Grant
Filed:
March 29, 1985
Date of Patent:
June 3, 1986
Assignee:
Phillips Petroleum Company
Inventors:
Marvin M. Johnson, Gerhard P. Nowack, Max P. McDaniel
Abstract: A new zeolite material designated EU-1 having a molar composition expressed by the formula:0.5 to 1.5 R.sub.2 O : Y.sub.2 O.sub.3 : at least 10 XO.sub.2 : O to 100 H.sub.2 O wherein R is a monovalent cation or 1/n of a cation of valency n, X is silicon and/or germanium, Y is one or more of aluminium, iron, gallium or boron, and H.sub.2 O is water of hydration additional to water notionally present when R is H, and having an X-ray pattern substantially as set out in Tables 1 and 2 is prepared from a reaction mixture containing XO.sub.2 (preferably silica), Y.sub.2 O.sub.3 (preferably alumina) and a dicationic alkylated polymethylene diamine. The new zeolite is useful in catalytic processes, especially xylenes isomerisation.
Type:
Grant
Filed:
June 14, 1985
Date of Patent:
June 3, 1986
Assignee:
Imperial Chemical Industries Plc
Inventors:
John L. Casci, Barrie M. Lowe, Thomas V. Whittam
Abstract: A zeolite related to zeolite L and having a characteristic cylindrical morphology may be prepared from a crystallization gel comprising (in mole ratios of oxides):K.sub.2 O/SiO.sub.2 : 0.22-0.36H.sub.2 O/K.sub.2 O: 25-90SiO.sub.2 /Al.sub.2 O.sub.3 : 6-15and preferably with the mole ratio H.sub.2 O/K.sub.2 O+Al.sub.2 O.sub.3 +SiO.sub.2 being at least 8. The cylindrical Zeolite L may be used as a catalyst base in aromatization of acyclic hydrocarbons with high benzene yields being sustained over commercially feasible periods.
Abstract: A titanium halide containing catalyst component for polymerization of olefins which is prepared by reacting a magnesium hydrocarbyloxide with a silicon compound having a hydrogen-silicon bond, contacting the reaction product with an electron donor compound, contacting the resulting contact product two or more times with a titanium halide and between one of the multiple titanium halide contacts, contacting the titanium halide contacted solid with a halogenated hydrocarbon.
Abstract: There is provided a process for producing aromatic hydrocarbons enriched in benzene content. The process involves contacting one or more C.sub.2 -C.sub.8 non-aromatic hydrocarbons, such as propylene, with a catalyst containing a zeolite, such as ZSM-5. The proportion of benzene in the aromatics produced is increased by including hydrogen sulfide (i.e. H.sub.2 S) in the feedstock.
Abstract: The operating performance of a tubular reactor system designed for the exothermic conversion of methanol to light olefins is improved by cofeeding small quantities of light olefins with the methanol feed, whereby a more controllable operation is achieved. Catalyst activity and cycle length also improves significantly. The light olefins can be produced in situ during conversion.
Abstract: SO.sub.x emission control from a catalytic cracking regenerator unit is improved by using a SO.sub.x transfer catalyst which has improved SO.sub.x adsorption capacity and which consists essentially of cerium or cerium and lanthanum or comprises cerium and/or lanthanum and alumina wherein cerium comprises at least about 1 wt. %.
Abstract: There is provided a process for producing aromatic hydrocarbons. The process involves contacting one or more non-aromatic compounds, such as propane, propylene, or methanol, with a catalyst containing a zeolite, such as ZSM-5. The zeolite is modified with phosphorus oxide by impregnating the zeolite with a source of phosphate ions, such as an aqueous solution of an ammonium phosphate, followed by calcination.
Abstract: There is provided a process for producing aromatic hydrocarbons from paraffins. The process involves contacting one or more C.sub.2 -C.sub.12 alkanes with a catalyst containing a zeolite, such as ZSM-5, modified with one or more oxides of Group IIIA, IVA or VA elements, such as Sc, Ti or V. The presence of these particular oxide modifiers has been observed to result in greater yields of aromatics including BTX.
Abstract: A catalyst composition is prepared by dissolving a suitable oxygen containing compound of a Group VIB metal (preferably Mo), a suitable compound of a Group VIII metal (preferably Ni) and phosphorous acid in water, mixing this solution with an alumina containing support material, and calcining this mixture. This catalyst composition is used primarily for hydrotreating of hydrocarbon feed stream, which contain nitrogen and sulfur impurities, particularly heavy cycle oils.
Abstract: For the manufacture of acetylene and synthesis or reduction gas from coal by means of an electric arc or plasma process, coal converted into powder form is pyrolyzed in an electric arc reactor with an energy density of 1 to 5 kWh/Nm.sup.3, a residence period of 0.5 to 10 msec and at a temperature of at least 1500.degree. C. such that the gaseous compounds derived from the coal do not exceed 1.8 times the so-called volatile content of the coal. The coke remaining after subsequent quenching is then fed to a second electric arc reactor in which the coke, by means of a gasifying medium in conjunction with heating by means of an electric arc or plasma process, is converted into synthesis or reduction gas furing a residence period of 1 to 15 sec and at a temperature of at least 800.degree. C. The gas flow from the pyrolysis zone is cleaned and acetylene is recovered therefrom by selective solvents. The gas from the cleaning stage is similarly cooled and cleaned.
Type:
Grant
Filed:
August 27, 1984
Date of Patent:
May 13, 1986
Assignee:
Huels Aktiengesellschaft
Inventors:
Richard Mueller, Lothar Kerker, Cornelius Peuckert
Abstract: Disclosed is a process for removing mineral matter from Rundle oil-shale by contacting the oil-shale with (a) an ammonium salt solution and (b) an organic solvent, at a temperature from about 0.degree. C. to about 300.degree. C. for a time which is sufficient to substantially separate at least about 80 wt. % of the carbonate mineral matter from the oil-shale.
Abstract: This invention is concerned with improved boron phosphate dehydration catalysts. More specifically, this invention is directed to a process for the conversion of an aldehyde to a diolefin comprising contacting an aldehyde of 4 to 6 carbon atoms in the vapor phase with a catalyst comprising boron phosphate wherein the boron phosphate has been treated with an ammonium carbonate or bicarbonate salt prior to calcination. This invention is also concerned with a large port catalyst for dehydration reactions wherein the improvement comprises the use of a catalyst with a molar ratio of P/B of about 1.0 modified with from 0.1 to 10 mole percent, based on moles of boron, of a carbonate salt selected from (NH.sub.4).sub.2 CO.sub.3 and NH.sub.4 HCO.sub.3.
Abstract: A process for the isomerization of n-butenes, comprising contacting, at elevated temperatures, a feed containing n-butenes with a catalyst comprising a crystalline silica polymorph of the silicalite type in the presence of stream to recover a steam containing isobutene. The reaction can be carried out in either liquid or vapor phase.
Type:
Grant
Filed:
April 3, 1985
Date of Patent:
May 6, 1986
Assignee:
Labofina, S.A.
Inventors:
Guy L. G. Debras, Georges E. M. J. De Clippeleir, Raymond M. Cahen
Abstract: Disclosed is a process for beneficiating oil-shale wherein the oil-shale is treated in a first stage with an aqueous ammonium salt solution and in a second stage and optionally a third stage in the presence of a solution containing ammonium ions/ammonia, or both. The pH of the first stage is from about 5 to 9, and the pH of the second and third stages are from about 0.5 to 5 or about 9 to 12 with the proviso that the pH of the second and third stage is not in the same range.
Abstract: Disclosed is a method and apparatus for the recovery and/or recycling of dimethylether (DME) during a methanol-to-chemical (MTC) conversion reaction. The hydrocarbon output is divided into liquid, vaporous and aqueous products. The liquid hydrocarbon products are reboiled to liberate dissolved DME and then provided as a liquid hydrocarbon product output. Vapor products resulting from the reboiling are combined with the vapor hydrocarbon stream and DME is removed therefrom in a DME absorber. The resultant vaporous hydrocarbons are passed out of the system as a product and the DME absorber materials recycled. In one embodiment, the DME absorber materials are methanol and water and these are combined with the aqueous liquid stream, stripped to reduce the water content, and resubmitted to the MTC reaction section for conversion.