Patents Examined by Akm Enayet Ullah
  • Patent number: 9429691
    Abstract: Lightguides, devices incorporating lightguides, processes for making lightguides, and tools used to make lightguides are described. A lightguide includes light extractors arranged in a plurality of regions on a surface of the lightguide. The orientation of light extractors in each region is arranged to enhance uniformity and brightness across a surface of the lightguide and to provide enhanced defect hiding. The efficiency of the light extractors is controlled by the angle of a given light extractor face with respect to a light source illuminating the light guide.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: August 30, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Tzu-Chen Lee, David A. Ender, Guoping Mao, Jun-Ying Zhang, Jaime B. Willoughby
  • Patent number: 9429721
    Abstract: A method and system connects multiple cores within one fiber, e.g., a multi-core fiber (MCF), to multiple fibers with single-cores. The single-core fibers can then be terminated by traditional envelopes, such as a single core LC envelope. A connector holds the single-core fibers into a pattern that matches a pattern of all, or a sub group, of the individual cores of the MCF. The single-core fibers may all be terminated to individual connectors to form a fanout or breakout cable. Alternatively, the single-core fibers may extend to another connector wherein the single-core fibers are regrouped into a pattern to mate with the cores of another MCF, hence forming a jumper. One or more of the single core fibers may be terminated along the length of the jumper to form a jumper with one or more tap accesses.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 30, 2016
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Jeffrey D. Nielson, Paul F. Kolesar, Gary F. Gibbs, Bradley Billman, Richard L. Case
  • Patent number: 9429746
    Abstract: A microstructure optical adapter or tip according to the present disclosure may incorporate precision micro structure optical components engaging the input or output end of light energy delivery devices for customized light delivery of the light energy. The incorporation of precision micro structure optical components in injection molded plastic or glass parts will allow for inexpensive modification of the output light while also serving to protect the end of the illumination device. The micro structure optical components may also be incorporated in an adapter to tailor the light energy to the subsequent device.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: August 30, 2016
    Assignee: Invuity, Inc.
    Inventors: Alex Vayser, Kenneth B. Trauner
  • Patent number: 9423567
    Abstract: Provided are an optical module, an optical communication apparatus, and an information processing system including the same. The optical module includes a lower clad layer, an optical waveguide extended in one direction on the lower clad layer, an optical device on the optical waveguide, a prism disposed between the optical device and the optical waveguide and having a higher refractive index than the optical waveguide, a housing covering the prism and the optical device, and an electrode layer adjacent to the prism and disposed between the housing and the optical waveguide.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 23, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Sahnggi Park
  • Patent number: 9417392
    Abstract: An optical waveguide component includes: an optical fiber mounting substrate provided with optical fiber alignment grooves having either, for alignment of optical fibers, V-grooves or inverted trapezoidal grooves in which inverted top sections of the V-grooves are truncated; an optical waveguide substrate in which optical waveguides are formed; a resin layer that is aligned and fixed in a state in which the optical fiber mounting substrate and the optical waveguide substrate are flush or have a predetermined amount of offset; and a transparent resin that is filled in a gap in which the optical fiber mounting substrate and the optical waveguide substrate face each other.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: August 16, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Akio Sugama, Shinya Sasaki
  • Patent number: 9417415
    Abstract: An optical interposer that includes a glass substrate having one or more optical vias extending through the glass substrate. A first optical polymer may be bonded to the substrate and to interior surfaces of the one or more optical vias. Implementations include one or more optical via cores comprising a second optical polymer that has a greater refractive index than the first optical polymer. The one or more optical via cores may be at least partially surrounded by the first optical polymer. Embodiments include encapsulated optical waveguides in communication with the optical vias and/or via cores. Example implementations include layers of electrical insulation, electrical traces, and electrical vias. A method of manufacture includes forming the optical vias by laser ablation. Certain embodiments may include chemically etching the inside of the vias to improve surface roughness.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 16, 2016
    Assignee: Georgia Tech Research Corporation
    Inventors: Rao R. Tummala, Chia-Te Chou, Venkatesh Sundaram
  • Patent number: 9417143
    Abstract: An apparatus and method for measuring bending of an object, a position of an item touching the object, and a shearing force of the item using an optical waveguide may include a frequency measurer to measure a frequency of light reflected from a grating of an optical waveguide, and a bending measurer to determine bending of an object to which the optical waveguide is attached using the frequency.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: August 16, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soo Chul Lim, Joon Ah Park, Hyun Jeong Lee, Seung Ju Han, Kyung Won Moon
  • Patent number: 9417403
    Abstract: An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: August 16, 2016
    Assignee: CommScope Technologies LLC
    Inventors: Julian S. Mullaney, Eric Emmanuel Alston, William Alan Carrico
  • Patent number: 9411104
    Abstract: An apparatus having a first waveguide, a second waveguide, a third waveguide, a fourth waveguide, and a fifth waveguide is described. A symmetric coupler has a proximal end and a distal end. The proximal end of the symmetric coupler is coupled to and in optical communication with the first waveguide and the second waveguide. The distal end of the symmetric coupler is coupled to and in optical communication with the fourth waveguide. An asymmetric coupler has a proximal end and a distal end. The asymmetric coupler is in a cascaded configuration with the symmetric coupler. The cascaded configuration has the proximal end of the asymmetric coupler coupled to and in optical communication with the fourth waveguide and the third waveguide. The distal end of the asymmetric coupler is coupled to and in optical communication with the fifth waveguide.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: August 9, 2016
    Assignee: Infinera Corporation
    Inventors: Joseph Summers, Peter Evans, Pavel Studenkov, Mark Missey, Mehrdad Ziari
  • Patent number: 9404731
    Abstract: In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 2, 2016
    Assignee: LightLab Imaging, Inc.
    Inventors: Desmond Adler, Stephen McCartin, Christopher Petersen
  • Patent number: 9405080
    Abstract: A cable connection system (100, 200, 300) includes a coupling housing (110, 210, 310) defining at least a first port (112, 212, 312); a printed circuit board (120, 220, 320) coupled to the coupling housing; and a communications component (130, 230, 330, 360, 400, 500, 550) sized to be received at the first port of the coupling housing. The printed circuit board (120, 220, 320) includes a light source (125, 225, 325). At least an indication section (135, 235, 335, 365, 450, 515) of the communications component (130, 230, 330, 360, 400, 500, 550) includes (e.g., is formed from or is coated with) a light transmissible material. The indication section (135, 235, 335, 365, 450, 515) is aligned with the light source (125, 225, 325) when the communications component (130, 230, 330, 360) is received at the first port of the coupling housing so that light emitted from the light source (125, 225, 325) illuminates the indication section of the communications component (130, 230, 330, 360, 400, 500).
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: August 2, 2016
    Assignee: COMMSCOPE CONNECTIVITY UK LIMITED
    Inventor: Stephen Lambourn
  • Patent number: 9405079
    Abstract: An assembly includes a first cable assembly with a first housing having a first mating face and a retention member. A first ferrule has a plurality of first optical fibers positioned therein. A first beam expanding element is generally aligned with each first optical fiber, and each first beam expanding element expands an optical beam generally to a beam diameter. A second cable assembly including a second housing with a second mating face. A second ferrule has a plurality of second optical fibers positioned therein. A second beam expanding element is generally aligned with each second optical fiber, and each second beam expanding element expands an optical beam generally to the beam diameter. A second retention member interacts with the first retention member to retain the first cable assembly to the second cable assembly.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: August 2, 2016
    Assignee: Molex, LLC
    Inventor: Malcolm H. Hodge
  • Patent number: 9405074
    Abstract: Methods and devices for aligning an optical current transducer are provided. The aligning includes, using a novel fixture having a predetermined grooved pattern therein, mounting, in a first groove of the pattern, a first portion of a cable of the optical current transducer and a polarizer unit of the optical current transducer. Further, the aligning can include mounting, in a second groove of the pattern, a second portion of the cable and a mirror unit of the optical current transducer.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: August 2, 2016
    Assignee: General Electric Company
    Inventors: Daniel Robert Wallace, Brian Timothy Ross
  • Patent number: 9400364
    Abstract: A multiport optical fiber connection terminal with a compact footprint has a configuration that allows for easy accessibility and interconnection of cables, while providing several mounting options and including storage space within the terminal. The terminal may include cable connectors that are configured to allow for weather proof installation of pre-terminated fiber optic cables with the terminal ports.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: July 26, 2016
    Assignee: Clearfield, Inc.
    Inventors: John P. Hill, Walter E. Power, Randy Van Horn
  • Patent number: 9401346
    Abstract: An optical bus of an integrated circuit comprises: a polymer waveguide, a micromirror, and an optical coupler. The polymer waveguide is disposed in a via formed through at least one die layer of the integrated circuit comprising an active circuit. The micromirror is disposed adjacent to the via and optically coupled to the polymer waveguide. The optical coupler is connected to the polymer waveguide to couple the active circuit to the optical bus. A stacked integrated circuit is described comprising such an optical bus. A method of fabricating a rear 45° micromirror on a silicon substrate that can be used in the optical bus is also described. Furthermore, alignment/lock mechanisms for use in a stacked integrated circuit comprising first and second silicon substrates are described.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: July 26, 2016
    Inventors: Chee Yee Kwok, Aron Michael, Yiwei Xu
  • Patent number: 9395494
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a semiconductor layer to propagate light and a mirror disposed inside the semiconductor layer and having echelle grating reflective surface to substantially totally internally reflect the propagating light inputted by one or more input waveguides, to be received by one or more output waveguides. The waveguides may be disposed in the semiconductor layer under a determined angle relative to the mirror reflective surface. The determined angle may be equal to or greater than a total internal reflection angle corresponding to the interface, to provide substantially total internal reflection of light by the mirror. The mirror may be formed by an interface of the semiconductor layer comprising the mirror reflective surface and another medium filling the mirror, such as a dielectric. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 19, 2016
    Assignee: Intel Corporation
    Inventors: Mahesh Krishnamurthi, I-Wei Hsieh, Haisheng Rong, Oshrit Harel, Harel Frish, Assia Barkai, Wenhua Lin
  • Patent number: 9395509
    Abstract: One aspect of the present disclosure relates to a multi-fiber cable assembly including a multi-fiber cable. The multi-fiber cable includes a block of optical fiber ribbons, the block having an external profile; a strength layer surrounding the optical fiber ribbons; a jacket surrounding the strength layer; and a fan-out arrangement disposed at a first end of the multi-fiber cable.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: July 19, 2016
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Cyle D. Petersen, Jeffrey Dean Shipe, Jonathan R. Kaml
  • Patent number: 9383537
    Abstract: Cassettes for optical cables with a plurality of adapters for connecting external devices to the cassette. The cassettes may be hingedly connected to a drop handle that is configured to inhibit access to the plurality of adapters when in a stored position, and allows access when in an open position. The drop handle includes a channel configured to guide cables to at least one side of the cassette while maintaining their connection to the plurality of adapters. The cassettes may also include an opening configured to allow the cables to exit the drop handle on at least one side of the cassette. A flexible radius controller may be connected to the opening and is configured to flex when the cassette is removed from a housing.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: July 5, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Hubert Blair Beamon, William Julius McPhil Giraud, Diana Rodriguez
  • Patent number: 9383514
    Abstract: To provide a tapered optical fiber having a good outer diameter accuracy and a high reproducibility, a manufacturing method of the tapered optical fiber, and a manufacturing system of the tapered optical fiber. The above-mentioned problem is solved by manufacturing system 1 of a tapered optical fiber comprising: shifter 11, 12 which reciprocates optical fiber 10 mounted at positions having a prescribed distance therebetween in the longer direction X of optical fiber 10 (the direction of the optical axis); and heating device 13 which heats the reciprocating optical fiber 10 at fixed position O, wherein shifter 13 includes a broadening unit which can increase the mounting distance (L1+L2) of the optical fiber while reciprocating the optical fiber. Shifter 11, 12 has at least two mounting unit which fix the optical fiber 10, and serves as a broadening unit controlling the two mounting unit independently or interlockingly.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 5, 2016
    Assignee: Ishihara Sangyo Co., Ltd.
    Inventors: Hidetoku Iida, Rumiko Osada, Hideaki Shiratori
  • Patent number: 9383512
    Abstract: A photonic integrated circuit is provided that may include a substrate; one or more optical sources, on the substrate, to output light associated with a corresponding one or more optical signals; one or more waveguides connected to the one or more optical sources; a multiplexer connected to the one or more waveguides; and one or more light absorptive structures, located on the substrate adjacent to one of the one or more optical sources, one of the one or more waveguides, and/or the multiplexer, to absorb a portion of the light associated with at least one of the corresponding one or more optical signals.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: July 5, 2016
    Assignee: Infinera Corporation
    Inventors: Peter Weindel Evans, Pavel Viktorovich Studenkov, Mehrdad Ziari, Matthias Kuntz