Patents Examined by Allen C. Ho
  • Patent number: 11004572
    Abstract: A charged particle detection material which can detect charged particles due to a discharge phenomenon or the like caused even in a very low voltage which cannot be observed by a prior art, as well as a charged particle detection film and a charged particle detection liquid using the material. The charged particle detection material and the charged particle detection film contain at least one of a fluorescent substance, a luminescent substance, an electroluminescent substance, a fractoluminescent substance, a photochromic substance, an afterglow substance, a photostimulated luminescent substance and a mechanoluminescent substance and can easily detect emission or incidence of charged particles in real time.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: May 11, 2021
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Nao Terasaki, Kazuya Kikunaga
  • Patent number: 11000256
    Abstract: Systems and methods for operating an imaging system to perform Cephalometric imaging. The imaging system includes a column, an upper shelf pivotably coupled to the column, a rotating part coupled to the upper shelf and linearly translatable along a length of the upper shelf in a direction radial to the column, a first x-ray source coupled to the rotating part, and an x-ray detector coupled to the rotating part on an opposite side of a first imaging volume from the first x-ray source. A center position of the Cephalometric patient support is determined relative to the imaging system in at least two dimensions by scanning the imaging volume while adjusting a pivot angle of the upper shelf and by scanning the imaging volume while adjusting a linear position of the rotating part along the upper shelf.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 11, 2021
    Assignee: PALODEX GROUP OY
    Inventors: Tero Isoaho, Ilpo Saarela, Esa Suuronen, Andreas Melin, Markku Ojala, Henri Setälä
  • Patent number: 11000701
    Abstract: An imaging apparatus includes a first X-ray detector that includes: a low energy scintillator operable to convert an incident X-ray spectrum into a first set of light photons; a first light imaging sensor operable to generate a set of low energy image signals from the first set of light photons, wherein a first exit radiation is a remainder portion of the first incident radiation after the X-ray spectrum passes through the low energy scintillator and the first light imaging sensor; an energy-separation filter operable to absorb or reflect at least a portion of the energy of the first exit X-ray spectrum and convert the first exit X-ray spectrum into a second exit X-ray spectrum; a second X-ray detector that includes: a high energy scintillator operable to convert the second exit X-ray spectrum into a second set of light photons; a second light imaging sensor operable to generate a set of high energy image signals from the second set of light photons; and a processor configured to: generate a high-energy image
    Type: Grant
    Filed: June 30, 2018
    Date of Patent: May 11, 2021
    Assignee: VAREX IMAGING CORPORATION
    Inventors: Minghui Lu, Richard Aufrichtig, Joachim Steiger
  • Patent number: 11000249
    Abstract: An X-ray detector (10) for a phase contrast imaging system (100) and a phase contrast imaging system (100) with such detector (10) are provided. The X-ray detector (10) comprises a scintillation device (12) and a photodetector (14) with a plurality of photosensitive pixels (15) optically coupled to the scintillation device (12), wherein the X-ray detector (10) comprises a primary axis (16) parallel to a surface normal vector of the scintillation device (12), and wherein the scintillation device (12) comprises a wafer substrate (18) having a plurality of grooves (20), which are spaced apart from each other. Each of the grooves (20) extends to a depth (22) along a first direction (21) from a first side (13) of the scintillation device (12) into the wafer substrate (18), wherein each of the grooves (20) is at least partially filled with a scintillation material.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 11, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Heiner Daerr, Thomas Koehler
  • Patent number: 10993682
    Abstract: A radiographic imaging apparatus in which a radiation source support unit supports a radiation source is adapted to be capable of being quickly carried to a use position in a small radius. A radiographic imaging apparatus includes a leg unit that includes three or more wheel units and is capable of traveling on an apparatus-placement surface by using wheels, a body unit that is held on the leg unit, an arm unit as a radiation source support unit that is connected to the body unit, a radiation source that is mounted on the arm unit, a battery that is received in the body unit and drives the radiation source, and a circuit that is received in the body unit and relates to the drive of the radiation source. The wheel unit is formed of a revolving caster.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 4, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Toshiyuki Nabeta, Ryosuke Ogura, Masayoshi Matsuura, Fumito Nariyuki, Haruyasu Nakatsugawa
  • Patent number: 10998371
    Abstract: An imaging apparatus includes a semiconductor substrate and a stack of layers of one or more dielectric materials and one or more conducting materials formed on the semiconductor substrate so as to define an array of pixel circuits including respective pixel electrodes at an upper layer of the stack of layers of one or more dielectric materials and one or more conducting materials and logic circuitry in an area adjacent to the array of pixel circuits. A light-absorbing layer is formed on the upper layer of the stack of layers of one or more dielectric materials and one or more conducting materials so as to overlie the area containing the logic circuitry and configured to absorb at least 90% of light that is incident on the light-absorbing layer. A layer of a photosensitive medium overlies the pixel electrodes.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 4, 2021
    Assignee: APPLE INC.
    Inventors: Erin Hanelt, Hong-Wei Lee
  • Patent number: 10996369
    Abstract: The present disclosure discloses a vehicle-mounted type back scattering inspection system. The vehicle-mounted type back scattering inspection system includes a carriage and a back scattering imaging device, the scanning range of the back scattering imaging device is variable. As the scanning range of the back scattering imaging device of the present disclosure is variably set, the inspection range of the back scattering imaging device can be expanded.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 4, 2021
    Inventors: Hao Yu, Ying Li, Weizhen Wang, Quanwei Song, Dongyu Wang, Haojie Chi, Jianmin Li, Yulan Li, Chunguang Zong, Zhiqiang Chen, Yuanjing Li, Li Zhang
  • Patent number: 10991539
    Abstract: The X-ray tube disclosed herein includes an electron emission unit including an electron emission element using a cold cathode; an anode unit disposed opposite to the electron emission unit, with which electrons emitted from the electron emission unit collide; and a focus structure disposed between the electron emission unit and a target unit disposed on a surface of the anode unit that is opposed to the electron emission unit. The electron emission unit is divided into a first region and a second region which can independently be turned ON/OFF. The X-ray tube is focus-designed such that collision regions, at the anode unit, of electron beams emitted from the respective first region and second region substantially coincide with each other.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 27, 2021
    Assignee: NANO-X IMAGING LTD.
    Inventors: Hidenori Kenmotsu, Hitoshi Masuya, Koichi Iida
  • Patent number: 10973489
    Abstract: Computed tomography (CT) imaging system has at least one processing unit configured to receive operator inputs that include a modified system feature and a clinical task having a task object and also receive operator inputs for determining a task-based image quality (IQ) metric. The task-based IQ metric represents a desired overall image quality of image data for performing the clinical task. The image data acquired using a reference system feature. The at least one processing unit is also configured to determine an exposure-control parameter based on the task object, the modified system feature, and the task-based IQ metric. The at least one processing unit is also configured to direct the x-ray source to generate the x-ray beam during the CT scan, wherein at least one of the tube current or the tube potential during the CT scan is a function of the exposure-control parameter.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 13, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Franco Rupcich, Dominic Crotty, Jiahua Fan, Parag Khobragade, Tal Gilat Schmidt
  • Patent number: 10973490
    Abstract: A radiation image photographing apparatus includes a hardware processor that, at a time of a radiation image photographing process, repeats a reset process of releasing a charge from a radiation detecting element by sequentially applying an on-voltage from a scan driver to scan lines, until a radiation irradiation is started, provides a predetermined waiting time to cause all switches to wait in an off-state after the reset process and before the next reset process, transitions to a charge accumulation mode of accumulating the charge in the radiation detecting element by applying an off-voltage to all scan lines, in response to radiation irradiation start, and transitions to a reading mode of releasing the charge from the radiation detecting element by applying the on-voltage to the scan lines, and performing an image data reading process by converting the released charge into image data, when a predetermined accumulation time has elapsed.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 13, 2021
    Assignee: KONICA MINOLTA, INC.
    Inventor: Yuki Kawana
  • Patent number: 10969504
    Abstract: A method of capturing and analyzing information for a particle detection system comprises generating a reaction to a plurality of particles using a converter material, wherein the converter material is operable to interact with the plurality of particles. The method further comprises converting a response to the reaction to an electrical signal using a plurality of sensors, wherein the converter material is operable to be coated onto the plurality of sensors, and wherein each of the plurality of sensors comprises an array of discrete pixel sensors each with a respective (x,y) coordinate within the array. Further, the method comprises processing the electrical signal to generate data regarding each pixel on the array of discrete pixels and serializing the data collected from the plurality of sensors and transmitting the data over thin cables to a processing unit that is located at a separate and remote location from the plurality of sensors.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: April 6, 2021
    Assignee: RHOMBUS HOLDINGS LLC
    Inventor: Anshuman Roy
  • Patent number: 10962490
    Abstract: An example method for aligning a spectrometer is described herein. The spectrometer includes a radiation source, a crystal analyzer, and a detector that are all positioned on an instrument plane. The method includes rotating the crystal analyzer about an axis that is within the instrument plane and perpendicular to a rotation plane such that (i) a reciprocal lattice vector of the crystal analyzer is within the instrument plane or (ii) a component of the reciprocal lattice vector within the rotation plane is perpendicular to the instrument plane. An origin of the reciprocal lattice vector is located on the axis. The method further includes tilting the crystal analyzer or translating the detector such that the reciprocal lattice vector bisects a line segment that is bounded by the detector and the radiation source. Example spectrometers related to the example method are also disclosed.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: March 30, 2021
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Devon R. Mortensen, Gerald Todd Seidler
  • Patent number: 10955336
    Abstract: Systems and methods for forming a compact gas sensor include a multilayer etalon as a wavelength discriminating element. The position of the etalon may be adjusted to tune its transmission profile. And embodiment directed to carbon dioxide detection is described.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 23, 2021
    Assignee: Innovative Micro Technology
    Inventors: Christopher S. Gudeman, Jaquelin K. Spong
  • Patent number: 10952689
    Abstract: Systems for large animal fluoroscopy having independently positionable X-ray emitter and X-ray detector arms on either side of the animal providing independent movement of the X-ray emitter and X-ray detector in multiple degrees of freedom.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: March 23, 2021
    Assignee: PRINCIPLE IMAGING CORPORATION
    Inventors: John D. Cox, Iain Hueton, Gary R. Cantu
  • Patent number: 10952691
    Abstract: A system for taking fluoroscopic images of large animals having a rotatable plate with a plurality of detectors disposed on the rotatable plate, wherein the plurality of detectors are arranged as spokes extending radially outwardly from a central rotational point on the rotatable plate with collimators disposed on the side edges of the spokes. A drive assembly rotates the rotatable plate about an axis extending through the central rotational point at a speed such that the duration of successive image frames corresponds to the time taken for each spoke of detectors to move to the position of an adjacent spoke of detectors.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: March 23, 2021
    Assignee: PRINCIPLE IMAGING CORPORATION
    Inventor: John D. Cox
  • Patent number: 10939884
    Abstract: A radiation emitting device includes a radiation source unit that irradiates a subject with radiation, a camera that captures an image of the subject to acquire a captured image of the subject, and a monitor that displays the captured image. A control device controls at least one of the inclination or the rotation angle of the monitor on the basis of at least one of the direction of the radiation source unit, the inclination of a radiation detector, and the rotation angle of the radiation detector, or the display content of the monitor.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: March 9, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Fumito Nariyuki, Ryosuke Ogura, Masayoshi Matsuura, Haruyasu Nakatsugawa
  • Patent number: 10937560
    Abstract: A method of limiting a X-ray beam, for example in connection with an extraoral radiographic apparatus, includes moving at least two blades of a blade limiting device through one actuator only, so as to produce a X-ray beam having the desired shape, wherein the actuator moves the at least two blades at the same time, in a direct way and in the same direction, even in the event of inversion of the direction of movement of the blades.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 2, 2021
    Inventors: Dario Righini, Sergio Salsini, Francesco Sciarra
  • Patent number: 10935691
    Abstract: The present disclosure relates to the technical field of CT detection, and in particular to a CT inspection system and a CT imaging method. The CT inspection system provided by the present disclosure comprises a radioactive source device, a detection device, a rotation monitoring device and an imaging device, wherein the detection device obtains detection data at a frequency that is N times a beam emitting frequency of the radioactive source device; the rotation monitoring device detects a rotation angle of the detection device and transmits a signal to the imaging device each time the detection device rotates by a preset angle; the imaging device determines a rotational position of the detection device each time the radioactive source device emits a beam according to the signal transmitted by the rotation monitoring device and the detection data of the detection device.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 2, 2021
    Inventors: Kejun Kang, Jianmin Li, Xiulin Ni, Yulan Li, Yuanjing Li, Zhiqiang Chen, Li Zhang, Liang Li, Xiang Zou, Weifeng Yu, Hejun Zhou, Chunguang Zong
  • Patent number: 10925569
    Abstract: During the generation of a panoramic x-ray recording, the use of semi-transparent x-ray screens allows the patient's x-ray exposure to be reduced when partial x-ray images are created, in spite of relatively large overlapping areas between the partial x-ray images.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Olivier Ecabert, Alexander Gemmel, Gerhard Kleinszig, Birgi Tamersoy
  • Patent number: 10925561
    Abstract: A portable digital radiography apparatus includes a frame including a base, a radiography panel configured to be accommodated on the frame, a computer configured to be accommodated on the frame, and a charging system disposed in the base, the charging system being connectable to the radiography panel and the computer and configured to charge both the radiography panel and the computer when the radiography panel and the computer are accommodated on the frame. The frame, the radiography panel, the computer, and the charging system are transportable as an integral unit when the radiography panel and the computer are accommodated on the frame.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 23, 2021
    Assignee: KONICA MINOLTA HEALTHCARE AMERICAS, INC.
    Inventor: Terry Snow