Patents Examined by Allison Bourke
  • Patent number: 8981208
    Abstract: A solar cell and a method for manufacturing the same are discussed. The solar cell includes a substrate of a first conductive type, an emitter layer of a second conductive type opposite the first conductive type, a plurality of first electrodes connected to the emitter layer, at least one first current collector connected to the plurality of first electrodes, and a second electrode connected to the substrate. The emitter layer forms a p-n junction along with the substrate. Each of the plurality of first electrodes has a multi-layered structure, and the at least one first current collector has a single-layered structure.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: March 17, 2015
    Assignee: LG Electronics Inc.
    Inventors: Sungjin Kim, Gyeayoung Kwag, Younggu Do, Mann Yi, Seongeun Lee, Youngsung Yang, Taeyoung Kwon, Haejong Cho, Minho Choi, Juhwa Cheong
  • Patent number: 8975506
    Abstract: A surface electrode (5) is installed on the light receiving surface of a solar cell element, the surface electrode (5) comprises three bus bar electrodes (5a) for extracting light-produced at the solar cell element to the outside and collecting finger electrodes (5b) connected to these bus bar electrodes (5a), and the bus bar electrodes (5a) are not less than 0.5 mm and not more than 2 mm in width and the finger electrodes (5b) are not less than 0.05 mm and not more than 0.1 mm in width. A high-efficient solar cell module can be obtained with substantially lowered resistance by increasing the number of bus bar electrode (5a) and thereby decreasing the lengths of the finger electrodes (5b).
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: March 10, 2015
    Assignee: KYOCERA Corporation
    Inventors: Shuichi Fujii, Yosuke Inomata, Tomonari Sakamoto, Koichiro Niira, Yuko Fukawa, Hiroshi Morita, Koji Nishi, Tatsuya Yashiki, Mitsuo Yamashita, Kenji Fukui
  • Patent number: 8975509
    Abstract: A recombination layer with a gradient work function is provided which increases the power-conversion efficiency of multijunction photovoltaic devices by reducing the energy barrier to charge carriers migrating between pairs of photovoltaic junctions thereby facilitating the optimal recombination of opposing electron and hole currents generated when the photovoltaic is illuminated.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: March 10, 2015
    Assignee: The Governing Council of the University of Toronto
    Inventors: Aaron Barkhouse, Xihua Wang, Edward H. Sargent, Ghada Koleilat, Lukasz Brzozowski
  • Patent number: 8962983
    Abstract: A laminated body, comprising: a supporting body having a concave-convex surface; and a semiconductor layer laminated on a surface of the supporting body, wherein a part of the supporting body includes a layer thickness measurement portion for optically measuring a layer thickness of the semiconductor layer, and the layer thickness measurement portion includes a reduced surface roughness region whose surface roughness is smaller than that of the concave-convex surface.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: February 24, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshiyuki Nasuno, Tohru Takeda
  • Patent number: 8962981
    Abstract: A solar cell device including an electrode formed by applying a conductive paste containing at least a conductive powder, glass frit and an organic vehicle onto a semiconductor substrate provided with a silicon nitride layer on a surface thereof and firing the applied conductive paste, wherein the electrode has a structure with a front electrode layer containing silver as a main component, a glass layer containing tellurium glass as a main component, and a silicon oxide layer containing plural silver particles precipitated by the firing. The solar cell device is provided with an electrode formed using a conductive paste not containing lead glass and has good solar cell characteristics.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 24, 2015
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Masami Nakamura, Naoto Shindo, Tadashi Kanasaku
  • Patent number: 8962990
    Abstract: The disclosure provides a multilayer composition containing fluoropolymer and method for fabricating the same, and a solar cell module. The multilayer composition includes: a fluoropolymer layer; a non-fluorinated polymer layer; and an adhesion promoter layer formed between the fluoropolymer layer and the non-fluorinated polymer layer, wherein the adhesion promoter layer includes aromatic diamines or aromatic polyamines.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: February 24, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Tien-Shou Shieh, Chia-Chi Huang
  • Patent number: 8962979
    Abstract: A photovoltaic device is provided in which a contact structure is formed having a plurality of heavily doped semi-conductor channels formed on a surface of a region to be contacted. The heavily doped semiconductor channels are of the same dopant polarity as the region to be contacted, and form lateral conduction paths across the surface of the region to be contacted. Contact metallization comprising conductive fingers are formed over the surface of the region to be contacted, and each conductive finger crosses at least some of the heavily doped channels to make electrical contact therewith. The contact structure is formed by forming a layer of dopant source material over the surface to be contacted, and laser doping heavily doped channels in the surface to be contacted. The contact metallization is then formed as conductive fingers formed over the surface to be contacted and may be screen printed, metal plated or may be formed as buried contacts.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 24, 2015
    Assignee: Newsouth Innovations Pty Limited
    Inventors: Stuart Ross Wenham, Budi Tjahjono, Ly Mai
  • Patent number: 8962978
    Abstract: A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, James Neil Johnson, Todd Ryan Tolliver, Theodore Carlton Kreutz, Xiaolan Zhang
  • Patent number: 8962976
    Abstract: Implementations and techniques for doped diamond solar cells are generally disclosed.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: February 24, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Ezekiel Kruglick
  • Patent number: 8962969
    Abstract: A thermoelectric device includes first and second legs extending continuously between first and second heat sources. The first and second legs respectively include first and second conducting elements and third and fourth conducting elements. The first and third conducting elements are adjacent and separated by an insulator. The second and fourth conducting elements are adjacent and separated by an insulator. The device also includes selection means enabling formation of a first thermocouple from the first and second conducting elements and formation of a second thermocouple from the third and fourth conducting elements.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: February 24, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Altenatives
    Inventors: Guillaume Savelli, Philippe Coronel, Marc Plissonnier
  • Patent number: 8962994
    Abstract: A photovoltaic device is disclosed. The photovoltaic device includes a substrate, an anode, a cathode, two semiconducting layers, and an electron transporting layer. The first semiconducting layer comprises a first metallophthalocyanine. The second semiconducting layer includes a blend of a second metallophthalocyanine with an electron acceptor. The second semiconducting layer is located between the first semiconducting layer and the electron transporting layer. The first and second metallophthalocyanines have different valences. The complementary absorption profiles of these layers result in a device having greater absorption and efficiency than expected, without the need for a recombination layer or the need to match current between layers.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 24, 2015
    Assignee: Xerox Corporation
    Inventors: Richard A. Klenkler, Avery P. Yuen, Nathan M. Bamsey
  • Patent number: 8847060
    Abstract: Solar module structures and methods for assembling solar module structures. The solar module structures comprise pyramidal three-dimensional thin-film solar cells arranged in solar module structures. The pyramidal three-dimensional thin-film solar cell comprises a pyramidal three-dimensional thin-film solar cell substrate with emitter junction regions and doped base regions. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The three-dimensional thin-film solar cell substrate comprises a plurality of pyramid-shaped unit cells. The solar module structures may be used in solar glass applications, building façade applications, rooftop installation applications as well as for centralized solar electricity generation.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 30, 2014
    Assignee: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 8829325
    Abstract: A method and system for using a method of pre-equilibrium ballistic charge carrier refraction comprises fabricating one or more solid-state electric generators. The solid-state electric generators include one or more of a chemically energized solid-state electric generator and a thermionic solid-state electric generator. A first material having a first charge carrier effective mass is used in a solid-state junction. A second material having a second charge carrier effective mass greater than the first charge carrier effective mass is used in the solid-state junction. A charge carrier effective mass ratio between the second effective mass and the first effective mass is greater than or equal to two.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 9, 2014
    Assignee: Neokismet L.L.C.
    Inventors: Anthony C. Zuppero, Jawahar M. Gidwani
  • Patent number: 8816190
    Abstract: In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a transparent layer; a first porous layer disposed on the transparent layer, wherein the first porous layer comprises a plurality of pores extending through a thickness of the first porous layer; a first semiconductor material disposed in the plurality of pores to form a patterned first semiconductor layer; and a second semiconductor layer disposed on the first porous layer and the patterned first semiconductor layer, wherein the patterned first semiconductor layer is substantially transparent. Method of making a photovoltaic device is also provided.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: August 26, 2014
    Assignee: First Solar, Inc.
    Inventors: Bastiaan Arie Korevaar, Renee Mary Whitney, Faisal Razi Ahmad
  • Patent number: 8779277
    Abstract: A method of transferring electrons with a light energy conversion material is described. The material includes a silica porous material having silicon atoms chemically bonded with an organic group that is an electron donor in a skeleton thereof, and an electron acceptor disposed in at least one portion among a pore, the skeleton and the outer circumference of the porous material. The method includes absorbing light energy by the organic group and transferring electrons excited by the light energy to the electron acceptor.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: July 15, 2014
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Shinji Inagaki, Masao Aoki, Ken-ichi Yamanaka, Kiyotaka Nakajima, Masataka Ohashi
  • Patent number: 8754323
    Abstract: A dye-sensitized solar cell is provided, wherein it can be produced by a relatively easy and simple process and ensures high conversion efficiency even in cases where the thickness of the porous semiconductor layer is increased. The dye-sensitized solar cell 10 includes, in the interior of or on the conductive-substrate-side surface of the porous semiconductor layer 16, conductive metal film 20, such as a film of tungsten, having a large number of randomly located penetrations 24. Penetrations 24 of the conductive metal film 20 are formed by forming a fine-particle layer on the surface of the porous semiconductor layer, forming a conductive metal film on the surface of the fine-particle layer, and making the fine-particle layer disappear by heating or solvent-cleaning.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: June 17, 2014
    Assignees: National University Corporation Kyushu Institute of Technology, Nippon Steel & Sumikin Chemical Co., Ltd.
    Inventors: Shuzi Hayase, Ryuichi Shiratsuchi, Suehiro Ohkubo, Yoshihiro Yamaguchi
  • Patent number: 8754326
    Abstract: The present invention provides a photoelectric conversion device in which changes in photoelectric conversion efficiency with time can be inhibited. The photoelectric conversion device according to the present invention includes: a pair of electrodes; an electrolytic solution disposed between the pair of electrodes; and a sealing portion that links the pair of electrodes and is provided around the electrolytic solution. At least part of the sealing portion includes at least one inorganic sealing portion constituted by an inorganic material and at least one resin sealing portion constituted by a material including a resin. The inorganic sealing portion and the resin sealing portion are disposed along a direction connecting the pair of electrodes.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: June 17, 2014
    Assignee: Fujikura Ltd.
    Inventors: Katsuhiro Doi, Kenichi Okada, Hiroshi Matsui
  • Patent number: 8742249
    Abstract: Solar module structures 210 and 270 and methods for assembling solar module structures. The solar module structures 210 and 270 comprise three-dimensional thin-film solar cells 110 arranged in solar module structures 210 and 270. The three-dimensional thin-film solar cell comprises a three-dimensional thin-film solar cell substrate (124 and 122, respectively) with emitter junction regions 1352 and doped base regions 1360. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The 3-D TFSC substrate comprises a plurality of single-aperture or dual-aperture unit cells. The solar module structures 270 using three-dimensional thin-film solar cells comprising three-dimensional thin-film solar cell substrates with a plurality of dual-aperture unit cells may be used in solar glass applications.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 8692108
    Abstract: A solar power collecting device including a parabolic concentrating unit, a light-guide pillar positioned on the parabolic concentrating unit, a solar cell positioned on the light-guide pillar and a transmissive protection cap for covering the light-guide pillar and the solar cell is disclosed.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 8, 2014
    Assignee: EPISTAR Corporation
    Inventor: Tsung-Xian Lee
  • Patent number: 8680392
    Abstract: A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type having at least one via hole, an emitter layer of a second conductive type opposite the first conductive type on the substrate, a first conductor electrically connected to the emitter layer, a second conductor electrically connected to the first conductor through the via hole, and a third conductor electrically connected to the substrate. The third conductor is electrically separated from the second conductor. A portion of the first conductor and a portion of the second conductor are positioned inside the via hole.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: March 25, 2014
    Assignee: LG Electronics Inc.
    Inventors: Juwan Kang, Jihoon Ko, Jonghwan Kim, Daehee Jang