Patents Examined by Allison M Fox
  • Patent number: 11981933
    Abstract: Devices, systems, and techniques are described for printing pre-aligned microtissues into larger tissue constructs. For example, a method of printing a tissue construct includes aligning cells in a first direction to create pre-aligned microtissues, suspending the pre-aligned microtissues in a liquid to create a bioink, and depositing the pre-aligned microtissues in a second direction to create the tissue construct.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: May 14, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Caleb Darwin Vogt, Angela Panoskaltsis-Mortari
  • Patent number: 11981932
    Abstract: Provided here in are methods of producing induced pluripotent stem cells (iPSCs) and isolated population of produced induced pluripotent stem cells (iPSCs). Also provided herein are methods of treating a subject in need thereof using the produced iPSCs or pharmaceutical compositions comprising the produced iPSCs.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: May 14, 2024
    Inventors: Iqbal S. Grewal, Rajkumar Ganesan, Sanjaya Singh
  • Patent number: 11976297
    Abstract: The present disclosure provides engineered immune cells and methods for their creation and use. The immune cells comprise activating and blocking receptors, that exhibit cross-talk between the receptors.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 7, 2024
    Inventor: Alexander Kamb
  • Patent number: 11975068
    Abstract: The present invention provides a method of enhancing an immune response to a vaccine by administering a vaccine and a population of isolated allogeneic human mesenchymal stem cells. The present invention also provides kits comprising a vaccine in a first container and a population of isolated allogeneic human mesenchymal stem cells in a second container.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: May 7, 2024
    Assignee: LONGEVERON, INC.
    Inventors: Joshua M. Hare, Ana Marie Landin
  • Patent number: 11975026
    Abstract: The present disclosure provides compositions and methods for treating diseases associated with expression of CD19 and/or CD22, e.g., by administering a recombinant T cell or natural killer (NK) cell comprising a CD22 CAR and a CD19 CAR as described herein. The disclosure also relates to CAR molecules specific to CD22 and/or CD19, methods of making a cell comprising the same and vectors encoding the same.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: May 7, 2024
    Assignee: Novartis AG
    Inventors: Boris Engels, Carla Patricia Guimaraes
  • Patent number: 11976278
    Abstract: Described herein are recruitment methods and compounds, compositions, and systems for recruitment. Also described herein are methods and compositions for template editing of genomic DNA using Agrobacterium-derived T-DNA molecules and/or proteins.
    Type: Grant
    Filed: December 6, 2020
    Date of Patent: May 7, 2024
    Assignee: Pairwise Plants Services, Inc.
    Inventors: Aaron Hummel, Shai Joshua Lawit, Jingyi Nie, Sabine Fräbel, Sharon Leigh Guffy
  • Patent number: 11970713
    Abstract: The invention relates to a method for long-term ex vivo maintenance or expansion of one or more of a human erythroblast, a human megakaryocyte-erythroid progenitor, or a human common myeloid progenitor, comprising the step of: culturing cells comprising one or more of those cells in a culture medium comprising one or more selected from a tankyrase inhibitor, a growth factor, a B-Raf kinase inhibitor and a GSK-3 inhibitor.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: April 30, 2024
    Inventors: Chang Tong, Yibin Lin, Kangtao Lv
  • Patent number: 11963990
    Abstract: The present disclosure provides for recombinant oncolytic viruses with gene deletions or insertions which result in downregulation of Major Histocompatibility Complex class I and alternatively or additively upregulation of Major Histocompatibility Complex class II. Immunologic and pharmaceutical compositions comprising these recombinant viruses and methods of using these compositions are also presented.
    Type: Grant
    Filed: May 24, 2023
    Date of Patent: April 23, 2024
    Assignee: KaliVir Immunotherapeutics, Inc.
    Inventors: Stephen Howard Thorne, Mingrui Zhang
  • Patent number: 11965180
    Abstract: Provided is a cancer stem cell mass from which cells incapable of forming cancer are substantially removed and which has a characteristic property of reproducing a layered structure of a cancer tissue; a process for producing the cancer stem cell mass; and use of the cancer stem cell mass. A human cancer tissue was repeatedly grown in a NOG mouse, separated cancer cells from the grown cancer tissue, and tested and compared various cancer cell culture processes. As a result, a cancer stem cell composition which is homogeneous and is substantially free of the coexistence of cells capable of forming cancer and cells incapable of forming cancer in a mixed state can be produced successively by employing an attached culture process using a serum-free stem cell culture medium rather than a generally employed floating culture process.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: April 23, 2024
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tatsumi Yamazaki, Hisafumi Okabe, Shinta Kobayashi, Yu Jau Chen, Atsuhiko Kato, Masami Suzuki, Koichi Matsubara
  • Patent number: 11965190
    Abstract: Provided herein are a vector, a genetically modified bacterium including the vector, methods of making the bacterium, methods of using the bacterium, and kits including the bacterium. The vector includes a coding region encoding at least one antimicrobial peptide, and the antimicrobial peptide includes at least one lysin.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: April 23, 2024
    Inventors: Yiannis John Kaznessis, Seth Ritter, Benjamin Hackel
  • Patent number: 11957720
    Abstract: The present invention generally relates to the field of probiotic bacteria. In particular, it relates to methods for treating or preventing functional GI disorders comprising administering Bifidobacterium longum, such as Bifidobacterium longum ATCC BAA-999.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Societe des Produits Nestle S.A.
    Inventors: Peter McLean, Gabriela Bergonzelli Degonda, Stephen Michael Collins, Premysl Bercik, Elena Verdu de Bercik
  • Patent number: 11959120
    Abstract: Provided herein are methods of producing oils with reduced saturated fatty acids. The methods include culturing oil-producing microorganisms in a fermentation medium in the presence of one or more antifoaming agents under a controlled carbon consumption rate, wherein the culturing produces oils comprising fatty acids and wherein less than 35% of the fatty acids in the oil are saturated fatty acids.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: April 16, 2024
    Assignee: MARA Renewables Corporation
    Inventors: Zhiyong Sun, Alan Sothern, Kevin Berryman, Mercia Valentine, Michael Milway, Laura Purdue, Roberto E. Armenta
  • Patent number: 11957718
    Abstract: The invention provides compositions comprising multipotent progenitor cells isolated from tonsillar tissue and differentiated cells derived therefrom and methods for using the cells for the treatment of diseases or disorders.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 16, 2024
    Assignee: University of Maryland, Baltimore
    Inventors: Michal Zalzman, Rodney Taylor
  • Patent number: 11951131
    Abstract: Provided are chimeric antigen receptors (CARs) having antigenic specificity for B-cell Maturation Antigen (SLAMF7). Also provided are related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions relating to the CARs. Methods of treating or preventing cancer in a mammal are also provided.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: April 9, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: James N. Kochenderfer, Steven A. Feldman
  • Patent number: 11952605
    Abstract: The present invention relates to methods of modulating the mannose content of recombinant proteins.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: April 9, 2024
    Assignee: Amgen Inc.
    Inventors: Jian Wu, Sean Davern, Simina Crina Petrovan, Michael Charles Brandenstein, Katherine Rose Lindahl, Shawn Erik Lillie
  • Patent number: 11951138
    Abstract: A method of mimicking a phenotype of a first ruminating animal in a second ruminating animal is disclosed. The method comprises administering to the second ruminating animal a microbial composition comprising a plurality of microbes having a signature which is statistically significantly similar to the microbial signature of a rumen microbiome of the first ruminating animal, wherein the first and the second ruminating animal are of identical species, thereby mimicking the phenotype of the first ruminating animal in the second ruminating animal.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 9, 2024
    Assignee: The State of Israel, Ministry of Agriculture & Rural Development, Agricultural Research Organization (ARO) (Volcani Center)
    Inventors: Itzhak Mizrahi, Elie Jami
  • Patent number: 11944647
    Abstract: Provided are adoptive cell therapy methods involving the administration of doses of cells for treating disease and conditions, including certain B cell malignancies. The cells generally express recombinant receptors such as chimeric antigen receptors (CARs). In some embodiments, the methods are for treating subjects with non-Hodgkin lymphoma (NHL). In some embodiments, the methods are for treating subjects with relapsed or refractory NHL. Also provided are articles of manufacture and prophylactic treatments in connection with adoptive therapy methods.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: April 2, 2024
    Assignee: Juno Therapeutics, Inc.
    Inventors: Tina Albertson, Brian Christin, Jacob Randolph Garcia, Christopher Glen Ramsborg, Claire L. Sutherland, Clinton Weber, Rachel K. Yost, Mark J. Gilbert, He Li
  • Patent number: 11944718
    Abstract: The disclosure herein relates to isolated and purified mammalian fetal allografts and kits and compositions containing these. Also disclosed are methods of preparing isolated and purified mammalian fetal allografts; methods of contacting a wound of a subject with these, and methods of treating a disease or condition with these.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 2, 2024
    Assignee: Healthtech Solutions, Inc.
    Inventors: Bradley Robinson, Douglas Ivins Schmid, Thayne Sherman Ekness
  • Patent number: 11946070
    Abstract: The present invention relates to a medium composition for reinforcing the efficacy of stem cells, including ethionamide, a method of reinforcing the efficacy of stem cells, including culturing stem cells in the medium composition, a method of preparing stem cells with reinforced efficacy, stem cells prepared by the above-mentioned method, and a use thereof. According to the present invention, the anti-inflammatory effect of mesenchymal stem cells and expression levels of paracrine factors may be effectively improved by a simple method of treating mesenchymal stem cells with ethionamide, and the stem cells obtained by the above method may be effectively used for preventing or treating an inflammatory disease or a degenerative brain disease.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: April 2, 2024
    Inventors: Duk Lyul Na, Jong Wook Chang, Hyo Jin Son
  • Patent number: 11939593
    Abstract: Compositions and methods for improving embryo development, treating idiopathic male factor infertility, and enabling infertile/sub-fertile/sterile men to father their own genetic offspring are provided. Typically, the methods include administering into a male or female gamete or fertilized embryo an effective amount of a compound that increases bioavailability of a TET protein to improve development of an embryo resulting from fertilization of the female gamete by a male gamete. The compound can be administered into the gamete or embryo before, during, or after fertilization. The compound can be administered by an injection such as intracytoplasmic injection. The compound and the male gamete can be administered in combination by intracytoplasmic sperm injection. Methods of making male gametes, and methods of modifying the genome of a male gamete or embryo using an effective amount of a gene editing composition to correct a gene mutation or anomaly in the genome thereof are also provided.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: March 26, 2024
    Inventors: Charles A. Easley, IV, Anthony W. S. Chan