Patents Examined by Allison M Fox
  • Patent number: 11932876
    Abstract: The present disclosure provides methods for forming stable three-dimensional vascular structures, such as blood vessels and uses thereof. More specifically, the present disclosure provides methods for culturing differentiated endothelial cells that include an exogenous nucleic acid encoding ETV2 transcription factor on a matrix under conditions that express exogenous ETV2 protein in the endothelial cell to form stable three-dimensional artificial blood vessels without the use of a scaffold, pericytes or perfusion. The present disclosure also provides stable three-dimensional blood vessels that are capable of autonomously forming a functional three-dimensional vascular network, and uses thereof.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 19, 2024
    Assignee: CORNELL UNIVERSITY
    Inventors: Shahin Rafii, Brisa Palikuqi
  • Patent number: 11932846
    Abstract: A system for expressing a chloramphenicol split protein is disclosed. Uses thereof are also disclosed.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 19, 2024
    Assignee: Technology Innovation Momentum Fund (Israel) Limited Partnership
    Inventor: Gali Prag
  • Patent number: 11931458
    Abstract: The present disclosure relates to exosome systems and compositions and preservative systems and compositions as well as methods of use and methods of manufacturing of them.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: March 19, 2024
    Inventors: Babak Ghalili, Keyon Janani, Peter Scherp, John Borja
  • Patent number: 11925726
    Abstract: The present disclosure is related to a perfusable-type bio-dual proximal tubule cell construct and a producing method thereof capable of applying an in vitro artificial organ model configured to include a first bioink comprising a decellularized substance derived from a mammalian kidney tissue and human umbilical vascular endothelial cells (HUVECs) and a second bioink comprising the decellularized substance and renal proximal tubular epithelial cells (RPTECs), wherein the first bioink and the second bioink are coaxial and printed in tubular constructs having different inner diameters. According to the present disclosure, it is possible to use the renal proximal tubule-on-a-chip as a bioreactor capable of observing a biological drug reaction similar to a real drug by perfusing various drugs to the renal proximal tubule-on-a-chip.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: March 12, 2024
    Assignees: POSTECH RESEARCH AND BUSINESS DEVELOPMENT FOUNDATION, THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY—ACADEMIC COOPERATION FOUNDATION
    Inventors: Dong-Woo Cho, Wonil Han, Narendra K. Singh, Yong Kyun Kim, Sun Ah Nam
  • Patent number: 11925532
    Abstract: A vented wound dressing barrier includes one or more membrane layers with a plurality of vents. The vents are cut along a perimeter of the vents through the one or more membrane layers. Each vent having a connection portion uncut relative to the one or more membrane layers thereby forming a hinge configured to allow the vents to open for drainage when exposed to fluid underlying the vented wound dressing barrier. The plurality of vents is each cut along the perimeter without removal of any of the membrane layer. The one or more membrane layers with the plurality of vents has a surface for covering a wound, the surface area in the absence of a fluid pressing on the vents having no openings or voids which reduce the surface area of a vented wound dressing barrier area covering a wound.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: March 12, 2024
    Assignee: Vivex Biologics Group, Inc.
    Inventors: Timothy Ganey, Shabnam Namin, Hanna Kaliada, Santiago Osorio
  • Patent number: 11918687
    Abstract: Disclosed herein are compositions comprising isolated exosomes, for instance exosomes wherein at least 20% of the exosomes comprise SDC2, methods of isolation, and methods of use.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 5, 2024
    Assignee: ORBSEN THERAPEUTICS LIMITED
    Inventors: Stephen J. Elliman, Jack Kavanaugh, Larry Couture
  • Patent number: 11918702
    Abstract: Described herein are new methods for making lung bud organoids (LBOs) that have the capacity of developing into branching airways and alveolar structures that a least partially recapitulate human lung development from mammalian, preferably human, pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (IPSC), either by culturing branched LBO in a 3D matrix or by transplanting the LBO under the kidney capsule of immune deficient mice. Branched LBOs contain pulmonary endoderm and mesoderm compatible with pulmonary mesenchyme, and undergo branching morphogenesis. Also described are LBOs harboring certain mutations that induce a fibrotic phenotype, and methods of making same. The mutated (B)LBOs can be used for screening agents that may treat pulmonary fibrosis.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: March 5, 2024
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Hans-Willem Snoeck, Ya-Wen Chen
  • Patent number: 11911450
    Abstract: The invention provides a method of treating or preventing pain in a subject in need thereof. The method comprising administering to the subject an expression vector comprising a nucleic acid sequence encoding carbonic anhydrase (10) or carbonic anhydrase (11) such that the nucleic acid is expressed to produce carbonic anhydrase (10) or carbonic anhydrase (11). Alternatively, the method comprising administering to the subject an expression vector comprising a nucleic acid sequence encoding a carbonic anhydrase (8) fragment such that the nucleic acid is expressed to produce the carbonic anhydrase (8) fragment.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 27, 2024
    Assignee: UNIVERSITY OF MIAMI
    Inventors: Roy Levitt, Gerald Z. Zhuang
  • Patent number: 11913020
    Abstract: The present invention relates to a medium composition for improving stem cell migration, which includes ethionamide, and a use thereof. According to the present invention, the migration of stem cells may be effectively improved by the adjustment of a culture environment, which is a simple and safe method, without using gene manipulation or a viral vector, and the stem cells improved in migration by the method may be effectively used as a stem cell therapeutic agent that is able to function by rapidly migrating to the damaged region after transplantation.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: February 27, 2024
    Assignee: SAMSUNG LIFE PUBLIC WELFARE FOUNDATION
    Inventors: Duk Lyul Na, Jong Wook Chang, Hyo Jin Son
  • Patent number: 11905530
    Abstract: Disclosed herein are cell culture compositions, for example, pancreatic cell culture compositions, derived from dedifferentiated human reprogrammed pluripotent stem cells, such as induced pluripotent stem (iPS) cells, and methods for producing and using such cell culture compositions.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: February 20, 2024
    Assignee: ViaCyte, Inc.
    Inventors: Alan D. Agulnick, Olivia Kelly, Yuki Ohi, Allan Robins, Thomas Schulz
  • Patent number: 11905315
    Abstract: Fusion proteins containing a targeting sequence, an exosporium protein, or an exosporium protein fragment that targets the fusion protein to the exosporium of a Bacillus cereus family member are provided. Recombinant Bacillus cereus family members expressing such fusion proteins are also provided. Genetically inactivated Bacillus cereus family members and recombinant Bacillus cereus family members that overexpress exosporium proteins are also provided. Seeds coated with the recombinant Bacillus cereus family members and methods for using the recombinant Bacillus cereus family members (e.g., for stimulating plant growth) are also provided. Various modifications of the recombinant Bacillus cereus family members that express the fusion proteins are further provided. Fusion proteins comprising a spore coat protein and a protein or peptide of interest, recombinant bacteria that express such fusion proteins, seeds coated with such recombinant bacteria, and methods for using such recombinant bacteria (e.g.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: February 20, 2024
    Assignee: SPOGEN BIOTECH INC.
    Inventors: Brian Thompson, Ashley Siegel
  • Patent number: 11905539
    Abstract: A novel modified polypeptide having an isopropylmalate synthase activity, a polynucleotide encoding the same, a microorganism including the polypeptide, and a method of producing L-leucine by culturing the microorganism.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: February 20, 2024
    Assignee: CJ Cheiljedang Corporation
    Inventors: Ji Hye Lee, Byeong Cheol Song, Ae Ji Jeon, Jong Hyun Kim, Hye Won Kim
  • Patent number: 11891615
    Abstract: A method of producing Klotho protein includes preparing a Klotho plasmid DNA vector, culturing cells, transfecting the cells with the Klotho plasmid DNA vector in a cell culture medium, growing the transfected cells, and harvesting the cell culture supernatant by removing the transfected cells. The Klotho plasmid DNA vector has a mammalian selection marker and a Klotho open reading frame. The cells are primary fibroblast cells and/or mesenchymal stromal cells. A method of manufacturing a cosmetic composition includes combining Klotho protein or the cell culture supernatant with a cosmetically acceptable vehicle. A method of treating a patient to improve the condition and appearance of aging skin includes topically administering the cosmetic composition to the patient. By upregulating the Klotho gene in vitro and incorporating the Klotho protein and growth factors into a composition, transepidermal water loss, skin atrophy, and free radical damage to the skin may be addressed.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 6, 2024
    Inventor: Gail Marion Humble
  • Patent number: 11891616
    Abstract: The present disclosure provides methods and compositions for the treatment of diseases and genetic disorders linked to MeCP2 loss and/or misfunction, including RETT syndrome. The methods and compositions of the present disclosure comprise rAAV vectors and rAAV viral vectors comprising transgene nucleic acid molecules comprising nucleic acid sequences encoding for a MeCP2 polypeptide.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: February 6, 2024
    Assignee: Board of Regents of the University of Texas System
    Inventors: Steven J. Gray, Sarah Sinnett
  • Patent number: 11882823
    Abstract: Stabilizing compositions for stabilizing a post-draw, but pre-analysis sample include, a saccharide, at least one heavy metal salt, and a pH from 5.9 to 8.0. The stabilizing compositions may include an aliphatic aldehyde, a buffer, and a preservative. The stabilizing compositions stabilize a sample for analysis. The analysis preformed on the stabilized cell may determine the state of a condition of interest, quantification of absolute cell counts, cellular activity, and qualitative analysis of cell types. Stabilizing a sample means that cells of the sample retain their biophysical properties, including biophysical properties of cell surface markers, for analysis. Preferably, the stabilizing compositions and methods may stabilize a sample for at least 16 days, and up to 30 days. The stabilizing compositions and methods may stabilize a sample for up to 180 days.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: January 30, 2024
    Inventors: Gregory R. Post, David Adle
  • Patent number: 11878037
    Abstract: Described are means, methods, and compositions useful for treatment of multiple sclerosis through the utilization of fibroblasts and/or derivatives thereof to concurrently stimulate regenerative processes while inducing a protolerogenic immune modulatory program. In certain embodiments, fibroblasts are selected for the concurrent properties of immune modulation and regeneration by enrichment for CD73 expressing fibroblasts. In particular embodiments, stimulation of regeneration implies activation of endogenous neural progenitor cells. In some embodiments, stimulation of regeneration implies induction of remyelination. The utilization of fibroblasts as a superior source for immune modulation, prevention of immune mediated pathology, and activation of T regulatory cells is provided within the context of multiple sclerosis.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: January 23, 2024
    Assignee: Figene, LLC
    Inventors: Pete O'Heeron, Thomas Ichim
  • Patent number: 11875298
    Abstract: An NADP(H) nanosensor has i) a nucleic acid sequence to which a regulator is capable of binding, wherein the oxidation state of the regulator depends on the NADP(H) availability; ii) a promoter sequence following the nucleic acid sequence i), to which an RNA polymerase is capable of binding, wherein the affinity of the RNA polymerase for the promoter sequence is influenced by the oxidation state of the regulator; iii) a nucleic acid sequence which is under the control of the promoter sequence ii) and which codes for an autofluorescent protein. The present invention also relates to a cell, a method for isolating genes which code for NADP(H)-dependent enzymes, and the use of an NADP(H) nanosensor.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 16, 2024
    Assignee: Forschungszentrum Julich GMBH
    Inventors: Solvej Siedler, Georg Schendzielorz, Stephan Binder, Lothar Eggeling, Stephanie Bringer-Meyer, Michael Bott
  • Patent number: 11865227
    Abstract: A bone implant comprising cancellous bone that is essentially free of blood cells, and which has been treated with at least one loosening agent, such as collagenase or a digestive enzyme, for a time and at a concentration to loosen the osteogenic cells in the cancellous bone matrix. The osteogenic cells in the matrix are viable cells. The treatment of the cancellous bone with at least one loosening agent enables the osteogenic cells to be more available for carrying out their osteogenic function and to provide for an increased rate of bone formation. Such implant also may include demineralized bone, such as demineralized cortical bone, which enhances the bone regenerative capacity of the cancellous bone.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 9, 2024
    Assignee: NuVasive, Inc.
    Inventors: Michelle LeRoux Williams, Charles Randal Mills, Rodney Monroy, Robert A. Zambon, Dayna Buskirk, Earl Fender
  • Patent number: 11865187
    Abstract: A composition comprising at least one AAV vector formulated for central nervous system delivery is described. The composition comprises at least one expression cassette which contains sequences encoding an anti-neoplastic immunoglobulin construct for delivery to the brain operably linked to expression control sequences therefor and a pharmaceutically acceptable carrier. The anti-neoplastic immunoglobulin construct may be an immunoglobulin modified to have decreased or no measurable affinity for neonatal Fc receptor (FcRn). Also provided are methods of using these constructs in preparing pharmaceutical compositions and uses thereof in anti-neoplastic regimens, particularly for primary and/or metastatic cancers of the brain.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: January 9, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: James M. Wilson, William Thomas Rothwell, Christian Hinderer
  • Patent number: 11859205
    Abstract: Culture media, which contain albumin carrying a reduced amount of fatty acid, are useful for culturing stem cells.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: January 2, 2024
    Assignee: AJINOMOTO CO., INC.
    Inventors: Yoko Kuriyama, Sho Senda, Yumi Ando, Tomomi Yoshida, Haruna Sato, Daisuke Ejima, Takayoshi Fujii, Masayo Date, Manabu Kitazawa