Patents Examined by Amir J Askarian
  • Patent number: 11417111
    Abstract: Various embodiments include methods and scanning systems for photonically detecting an object of high-interest having selective wavelength reflection. Various embodiments include sequentially scanning the environment by projecting a coherent pulsed electromagnetic beam of light of a first wavelength. Reflected light of the first coherent beam is received onto a photoelectric detector, which outputs digital intensity data. Various embodiments further include sequentially scanning the environment by projecting a coherent pulsed electromagnetic beam of light of a second wavelength different from the first wavelength. Reflected light of the second coherent beam is received onto a photoelectric detector, which outputs digital intensity data. The intensity of the reflected light of the first wavelength may be compared with the intensity reflected light of the second wavelength, and an alert may be sent to an autonomous vehicle system in response to the intensity difference exceeding a threshold.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 16, 2022
    Assignee: TERRA SCIENTIA, LLC
    Inventors: John G. Aceti, Jonathan Bernstein, Dennis Garrison
  • Patent number: 11415678
    Abstract: A receiver for a light detection and range finding system is disclosed. The receiver can include an optoelectrical device to receive a pulse of light reflected from a target and to convert the pulse of light to a current pulse. The receiver can also include a transimpedance amplifier (TIA) to convert the current pulse to a voltage pulse. The receiver can also include a tunable filter that has an input coupled to an output of the TIA. The tunable filter can have a frequency response that is adjustable. The TIA and the tunable filter can be disposed on a single integrated circuit (IC) die.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 16, 2022
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Savas Tokmak, Sinan Alemdar
  • Patent number: 11408999
    Abstract: A LIDAR system includes an imaging sensor optically aligned with imaging optics along a first optical path. A laser source is optically aligned with laser optics along a second optical path. A single scanning mechanism is aligned with both the first optical path and the second optical path for directing outgoing laser illumination from the laser source in a scanning direction and for directing incoming laser return illumination from the scanning direction.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: August 9, 2022
    Assignee: Goodrich Corporation
    Inventors: James B. Johnson, Ian Peter Humphrey
  • Patent number: 11402203
    Abstract: A sensor module for connection to a handheld rangefinder instrument and for providing sensor data for the rangefinder instrument includes an electronic interface for connection to an applicable interface of the rangefinder instrument, and at least one electronic sensor component for generating the sensor data. A system for handheld measurement of distances to a surface region of an object includes a sensor module of this kind and a handheld rangefinder instrument having a first laser rangefinder. When the interfaces are connected to one another, the sensor module is configured for transmitting the sensor data to the rangefinder instrument, and the interfaces are configured for transmitting electric power from the rangefinder instrument to the sensor module, in which the sensor module is configured to operate the at least one sensor component by means of the electric power transmitted by the rangefinder instrument.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: August 2, 2022
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Thomas Bösch, Markus Hammerer
  • Patent number: 11402206
    Abstract: A surveying instrument comprises a distance measuring light projecting module, a light receiving module, an optical axis deflector which integrally deflects a distance measuring optical axis and a light receiving optical axis, a wide-angle image pickup module, a projecting direction detecting module configured to detect an optical axis deflection angle and a deflecting direction, a narrow-angle image pickup module, a distance measurement calculating module and an arithmetic control module, wherein the arithmetic control module is configured to control the optical axis deflector and the distance measurement calculating module, wherein the distance measurement calculating module is configured to perform a distance measurement of a measuring point based on a light emission timing of a distance measuring light and a light reception timing of a reflected distance measuring light, and wherein the narrow-angle image pickup module is configured to acquire a narrow-angle image with the distance measuring optical axis
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: August 2, 2022
    Assignee: TOPCON Corporation
    Inventors: Fumio Ohtomo, Ikuo Ishinabe, Kaoru Kumagai
  • Patent number: 11385334
    Abstract: An optical scanning device includes a supporting body 2; an optical waveguide composed of a single crystal having electro-optic effect and integrated with the supporting body directly or through a clad layer; a plurality of periodic domain inversion parts formed in the optical waveguide, the periodic domain inversion parts having periods different from each other; and a plurality of electrodes capable of applying voltages on the periodic domain inversion parts, respectively, to generate diffraction gratings in the periodic domain inversion parts, respectively. The clad layer is composed of a material having a refractive index lower than a refractive index of the single crystal forming the optical waveguide.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: July 12, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Jungo Kondo, Naotake Okada, Tetsuya Ejiri, Keiichiro Asai, Shoichiro Yamaguchi
  • Patent number: 11385351
    Abstract: A method of adjusting a detection threshold in a frequency-modulated continuous wave (FMCW) light detection and ranging (LIDAR) system includes determining a first confidence threshold for detecting a first target from multiple targets within a frequency range, wherein the frequency range comprises frequencies corresponding to the targets. The method further includes determining a subset of frequencies within the frequency range for detecting a second target. The second target transmits signals within the subset of frequencies lower than the first confidence threshold. The method further includes adjusting the first confidence threshold to a second confidence threshold at the subset of frequencies for detecting the second target within the subset of frequencies and restoring the second confidence threshold to the first confidence threshold outside the subset of frequencies for detecting the first target.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: July 12, 2022
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11378665
    Abstract: A distance measuring apparatus includes an image sensor and an image sensor driver. The image sensor includes a photodiode, a first capacitor and a second capacitor, and a first transfer gate and a second transfer gate configured to transmit an output of the photodiode to the respective first and second capacitors. The image sensor driver is configured to complementarily drive the first transfer gate and the second transfer gate.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 5, 2022
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Jae-Wan Kim, Jae-Yong Lee, Jong-Ahn Kim, Jae-Heun Woo, Young Pyo Hong
  • Patent number: 11378666
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: July 5, 2022
    Assignee: Luminar, LLC
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 11372090
    Abstract: In one embodiment, a LIDAR device of an autonomous driving vehicle (ADV) includes a light emitter to emit a light beam towards a target, wherein at least a portion of the light beam is reflected from the target. The LIDAR device further includes an optical sensing unit including a first photodetector and a second photodetector. The first photodetector is a different type of photodetector from the second photodetector, where the optical sensing unit is to receive the portion of the light beam reflected from the target. When the optical sensing unit receives the portion of the light beam, the first photodetector generates a first optical sensor output signal and the second photodetector generates a second optical sensor output signal. The LIDAR device further includes a first circuitry portion to generate an intensity signal indicative of an intensity of the received portion of the light beam responsive to the first optical sensor output signal.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 28, 2022
    Assignee: BAIDU USA LLC
    Inventors: Tianjia Sun, Yaoming Shen, Xiangfei Zhou, Yang Han
  • Patent number: 11366205
    Abstract: A selection circuit selects one of digital values respectively output from a TDC 1 and a TDC 2. A histogram generation circuit generates a histogram indicating a relationship between a bin number and a frequency by counting up the frequency of the bin number according to the digital value selected by the selection circuit.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: June 21, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshiki Ikuta, Takuma Hiramatsu, Takayuki Shimizu, Hideki Sato
  • Patent number: 11353558
    Abstract: Various technologies described herein pertain to multiple laser, single optical resonator lidar systems. A lidar system includes a single optical resonator optically coupled to at least a first laser and a second laser. The optical resonator is formed of an electrooptic material. The first laser and the second laser are optically injection locked to the optical resonator. Moreover, a modulator applies a time-varying voltage to the optical resonator to control modulation of an optical property of the electrooptic material, which causes the first laser to generate a first frequency modulated optical signal comprising a first series of optical chirps and/or the second laser to generate a second frequency modulated optical signal comprising a second series of optical chirps. Further, front end optics transmits at least a portion of the first frequency modulated optical signal and/or the second frequency modulated optical signal into an environment from the lidar system.
    Type: Grant
    Filed: December 29, 2018
    Date of Patent: June 7, 2022
    Assignee: GM CRUISE HOLDINGS LLC
    Inventor: Lutfollah Maleki
  • Patent number: 11353559
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern, where each scan line is oriented substantially parallel to the first scan axis. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis that is substantially orthogonal to the first scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 7, 2022
    Assignee: Luminar, LLC
    Inventors: Scott R. Campbell, Matthew D. Weed, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Patent number: 11346950
    Abstract: A system, device and method of generating high resolution and high accuracy point cloud. In one aspect, a computer vision system receives a camera point cloud from a camera system and a LiDAR point cloud from a LiDAR system. An error of the camera point cloud is determined using the LiDAR point cloud as a reference. A correction function is determined based on the determined error. A corrected point cloud is generated from the camera point cloud using the correction function. A training error of the corrected point cloud is determined using the first LiDAR point cloud as a reference. The correction function is updated based on the determined training error. When training is completed, the correction function can be used by the computer vision system to generate a generating high resolution and high accuracy point cloud from the camera point cloud provided by the camera system.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 31, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Elmira Amirloo Abolfathi, Keyvan Golestan Irani
  • Patent number: 11340351
    Abstract: A digital signal processing circuit measures a distance according to a plurality of modulation frequencies including a first modulation frequency and a second modulation frequency lower than the first modulation frequency. The digital signal processing circuit is configured such that, when measuring the distance at the first modulation frequency, a storage capacitance of a light receiving element 6 stores or discharges electric charges according to the timing when the polarity of a phase is controlled by a light emission control unit at each transmission of a sub sequence and the distance is measured according to the electric charges stored in the storage capacitance. The digital signal processing circuit corrects the distance measurement result based on the measurement result at the first modulation frequency and the measurement result at the second modulation frequency.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: May 24, 2022
    Assignee: DENSO CORPORATION
    Inventor: Toshiaki Nagai
  • Patent number: 11333748
    Abstract: Example embodiments relate to arrays of light detectors with a corresponding array of optical elements. An example embodiment includes a light detection and ranging (LIDAR) system. The LIDAR system includes an array of light detectors. The LIDAR system also includes a shared imaging optic. Further, the LIDAR system includes an array of optical elements positioned between the shared imaging optic and the array of light detectors. Each light detector in the array of light detectors is configured to detect a respective light signal from a respective region of a scene. Each respective light signal is transmitted via the shared imaging optic and modified by a respective optical element in the array of optical elements based on at least one aspect of the scene.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 17, 2022
    Assignee: Waymo LLC
    Inventors: Ralph H. Shepard, Pierre-Yves Droz, David Schleuning, Mark Shand, Luke Wachter
  • Patent number: 11327488
    Abstract: Provided are non-uniform light-emitting lidar (light detection and ranging) apparatuses and autonomous robots including the same. A lidar apparatus may include a light source configured to emit light, an optical unit arranged on an optical path of light emitted from the light source and configured to change an optical profile of the light to be non-uniform, and a 3D sensor configured to sense location of an object by receiving reflection light from the object.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: May 10, 2022
    Assignee: SAMSUNG ELECTRONICS CO.. LTD.
    Inventors: Jangwoo You, Namseop Kwon, Yonghwa Park, Jisan Lee, Myungjae Jeon
  • Patent number: 11327204
    Abstract: Provided are projectors, each including a light source configured to emit laser light, a substrate spaced apart from the light source by a distance, a pattern mask including a pattern on a first surface of the substrate, the first surface facing the light source, and a meta-lens including a plurality of first nanostructures on a second surface of the substrate, the second surface facing the first surface, the nanostructures having a shape dimension of a sub-wavelength that is less than a wavelength of light emitted from the light source.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: May 10, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jangwoo You, Byunghoon Na, Seunghoon Han
  • Patent number: 11307296
    Abstract: The present disclosure relates to a time-of-flight distance measuring device. The light source (24) includes a plurality of emitting portions (70, 72), each of which illuminates a respective one of the sub-regions (R1, R2). The light receiver (26) includes a plurality of receiving portions (74, 76) corresponding to respective ones of the emitting portions (70, 72). The first controller (28) controls (i) a first emitting portion (70) to emit the emitted light including an Nth-order harmonic component of a fundamental frequency and (ii) a second emitting portion (72) to emit the emitted light including an Mth-order harmonic component. The second controller (30) controls a particular receiving portion (74) corresponding to the first emitting portion (70) to be sensible to the Nth-order Mth-order harmonic components. The multipath detector (82) detects occurrence of the multipath error when the particular receiving portion (74) senses both the Nth-order and Mth-order components.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: April 19, 2022
    Assignees: DENSO CORPORATION, ESPROS PHOTONICS AG
    Inventors: Toshiaki Nagai, Martin Popp, Cengiz Tugsav Kupcu
  • Patent number: 11300664
    Abstract: A LiDAR odometry method based on the directed geometric point and sparse frame includes: obtaining original three-dimensional point cloud data of a surrounding environment in the coordinate system of the current frame of the LiDAR sensor; constructing and converting the first directed geometric point set and first environmental directed geometric point set into the second directed geometric point set and second environmental directed geometric point set in the world coordinate system, respectively; calculating candidate associated points in the second environmental directed geometric point set in association with each point in the second directed geometric point set, and determining the best associated point of each point in the second directed geometric point set; constructing and solving a pose optimization function to obtain an optimized pose from the coordinate system of the current frame of the LiDAR sensor to the world coordinate system; and updating directed geometric point sets of sparse frames.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: April 12, 2022
    Assignees: INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES, Beijing EnGo Technology Co., Ltd.
    Inventors: Zhiqiang Cao, Zhonghui Li, Jinli Kang, Min Tan, Shuang Liang, Chengpeng Wang