Patents Examined by Amir J Askarian
  • Patent number: 11287518
    Abstract: An optical sensor of the present invention changes a light-emitting period of a light-emitting element and a period of a reference clock that is used by a time difference extracting circuit, depending on whether or not a digital value that is output from a first digital calculating portion exceeds a reference value in a determination period. With this, there is achieved an optical sensor capable of maintaining both of measurement accuracy at short distance and measurement accuracy at long distance when a housing panel is present between the optical sensor and a detection target.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 29, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshiki Ikuta, Hideki Sato, Takuma Hiramatsu, Takayuki Shimizu
  • Patent number: 11275155
    Abstract: A LIDAR device includes an array of lasers and an array of corresponding receivers. The spatial distribution of the lasers corresponds to that of the receivers. The array of lasers creates an array of beamlets and correlated receiver fields of view for dense three-dimensional point cloud mapping with precise angular spacing defined by lithographically grown transmitter and receiver arrays. A transmitter lens may be provided that maximizes optical throughput in a coaxial LIDAR by crossing the transmitter beamlets at the focus of the transmitter lens, where a transmit and receive combiner is also located. A single transmitter lens may be used to both collimate and steer the transmitter beamlets to generate a desired spot pattern in angle space. Control circuitry for the lasers may include a drive transistor with a power source coupled to a source terminal and an isolated gate driver coupled to a gate terminal.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: March 15, 2022
    Assignee: Lockheed Martin Coherent Technologies, Inc.
    Inventors: Mark W. Phillips, Peter G. Wanninger, Samuel Trent Thurman, Philip Gatt, Carl R. Anderson
  • Patent number: 11237255
    Abstract: A light detection and ranging (LiDAR) system is provided. The present embodiment provides a LiDAR system in which side angles of a rotating polygon mirror having multiple facets are diversified to change an angle of a laser beam refracted from a side facet, thereby sensing a plurality of vertical lines at the same time. The present embodiment provides a LiDAR system which allows an object to be sensed with a circular pattern, a circular matrix pattern, or a line matrix pattern by diversifying a pattern of a laser beam oscillated due to the rotation of a rotating polygon mirror having multiple facets and a wedge prism.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: February 1, 2022
    Assignee: LVI Technologies Inc. CO., Ltd
    Inventors: Jaesung Jeong, Youngmin Jeong
  • Patent number: 11237251
    Abstract: In described examples of a system for outputting a patterned light beam, the system includes: an illumination source; a positive optical element positioned to receive light from the illumination source and to output converging light; a reflective element positioned to receive the converging light from the positive optical element, the reflective element configured to reflect the converging light to form a scan beam; and a negative optical element to receive the scan beam from the reflective element, the negative optical element configured to output the scan beam to a field of view.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 1, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Terry A. Bartlett
  • Patent number: 11237252
    Abstract: A detection apparatus includes an emission component, a receiver, and a controller electrically connected with the emission component and the receiver. The emission component includes an emitter configured to emit a signal, a reflector disposed in proximity to the emitter and configured to reflect the signal emitted by the emitter, and a driver connected to the reflector. The controller is configured to control the driver to drive the reflector to rotate.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 1, 2022
    Assignee: SZ DJI TECHNOLOGY CO., LTD.
    Inventors: Jiebin Xie, Wei Ren, Weisi Ma, Guyue Zhou
  • Patent number: 11226401
    Abstract: An optical distance measuring apparatus is provided. The optical distance measuring apparatus includes a housing and multiple light projection and light reception portions. The housing includes an opening face. The multiple light projection and light reception portions emit light, and receive the light after the light is reflected. The multiple light projection and light reception portions are accommodated in the housing. The light is provided by laser light. By combining optical paths of the multiple light projection and light reception portions, a view angle of the optical distance measuring apparatus is widened compared with a view angle of one of the multiple light projection and light reception portions. The optical paths of the multiple light projection and light reception portions overlap with one another in the opening face when seen from a direction perpendicular to a direction along which the view angle of the optical distance measuring apparatus is widened.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: January 18, 2022
    Assignee: DENSO CORPORATION
    Inventors: Shunpei Suzuki, Kunihiko Hayashi
  • Patent number: 11204421
    Abstract: A distance measuring device includes a controller and a distance calculator. The controller sets, in a first time period, a first measurement time range corresponding to a first measurement distance range; causes a light emitter to emit light and places a light receiver into an exposure state, in the first measurement time range; sets, in a second time period, a second measurement time range corresponding to a second measurement distance range; and causes the light emitter to emit light and places the light receiver into an exposure state, in the second measurement time range. At least one measurement condition is different between the first and second time periods. The distance calculator calculates the distance from the distance measuring device to a measurement target, based on the time from the emission to the reflection of light. The time is in at least one of the first and second time periods.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: December 21, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD
    Inventors: Akito Inoue, Masato Takemoto, Shinzo Koyama, Motonori Ishii, Shigeru Saitou
  • Patent number: 11194022
    Abstract: A detection system for a vehicle in an environment has a reflective member positioned along an x-y plane for rotation around a rotational axis orthogonal to the x-y plane. The reflective member has a plurality of reflective sides, each of the reflective sides sloping towards the rotational axis at a slope angle different than the slope angle of at least one of the others of the reflective sides. At least one detector is positioned offset from the rotational axis and the x-y plane, an active side of the plurality of reflective sides positioned to provide a field of view between the detector and the environment. An actuator is configured to rotate the reflective member around the rotational axis to change the active reflective side to a different one of the plurality of reflective sides.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: December 7, 2021
    Assignee: Veoneer US, Inc.
    Inventors: Bernard de Mersseman, Peter Hansson, Emil Hällstig
  • Patent number: 11175405
    Abstract: Embodiments describe optical imagers that include one or more micro-optic components. Some imagers can be passive imagers that include a light detection system for receiving ambient light from a field. Some imagers can be active imagers that include a light emission system in addition to the light detection system. The light emission system can be configured to emit light into the field such that emitted light is reflected off surfaces of an object in the field and received by the light detection system. In some embodiments, the light detection system and/or the light emission system includes micro-optic components for improving operational performance.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: November 16, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu
  • Patent number: 11163044
    Abstract: A lidar system comprising a laser light source for emitting laser light, a light modulator unit, and a detector, the laser light emitted by the laser light source and reflected by an object being directed first through the light modulator unit and thereupon onto the detector, and the light modulator unit being designed to modify over time a light output that strikes the detector.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: November 2, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Annemarie Holleczek, Hans-Jochen Schwarz
  • Patent number: 11131756
    Abstract: An example LIDAR system includes a detector, an amplifier, a time-to-digital converter (TDC), an integrator, an analog-to-digital converter (ADC), and a processor. The detector is configured to receive a reflected light pulse, where the reflected light pulse is reflected off of an object. The amplifier is coupled to the detector to generate an analog signal in response to the reflected light pulse. The TDC is coupled to the amplifier to generate a first time data and a second time data in response to the analog signal. The integrator is coupled to the amplifier to integrate the analog signal. The ADC is coupled to the integrator to sample an output of the integrator and to generate a digital sample. The processor is configured to process the first time data, the second time data, and the digital sample to estimate a total reflected energy of the reflected light pulse.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: September 28, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Volodimir Slobodyanyuk, Manav Raina
  • Patent number: 11125769
    Abstract: A three-dimensional wind vector field measurement system employs convergent beams for localised velocity measurement enabling mapping of the wind field across an extended spatial region. This enables characterisation of complex field signatures. This enables advanced control and protective systems for wind turbines. This also enables improved wind harvesting. This also enables improved prospecting. This also enables improved equipment selection. Buoy mounted systems enable measurement in an offshore environment.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 21, 2021
    Assignee: Wind Farm Analytics Ltd
    Inventor: Theodore Cosmo Holtom
  • Patent number: 11125878
    Abstract: System, methods, and other embodiments described herein relate to a photonic apparatus. The photonic apparatus including a phase alignment waveguide including waveguide inputs and waveguide outputs. The waveguide inputs being operably connected with a light source to provide a light wave into the phase alignment waveguide and the waveguide outputs providing a plurality of light waves from the optical waveguide. The phase alignment waveguide modulates the light wave to generate the plurality of light waves with different phases. The photonic apparatus includes a transmit switch operably connected with the waveguide inputs to selectively connect at least one of the waveguide inputs with the light source to provide the light wave into the phase alignment waveguide. The photonic apparatus includes control circuitry operably connected with the transmit switch, the control circuitry dynamically activating the at least one of the waveguide inputs according to an electronic control signal.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: September 21, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Paul Donald Schmalenberg, Tsuyoshi Nomura, Jae Seung Lee
  • Patent number: 11125863
    Abstract: A correction device including a photon number counting unit that counts a photon number on the basis of an output signal output from a light receiving unit, a correction value acquiring unit that acquires a correction value corresponding to the photon number, and a correction unit that performs correction based on the correction value.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: September 21, 2021
    Assignee: SONY CORPORATION
    Inventors: Toyoharu Oohata, Takahiro Koyama, Tomoki Ono
  • Patent number: 11125876
    Abstract: A LiDAR system and a method for ascertaining a system state of a LiDAR system, includes an optical source, a mirror, a partially transparent element, a detector array and an evaluation unit. The optical elements of the LiDAR system are arranged so that a component of the light beam is reflected by the partially transparent element onto the detector array. The evaluation unit is configured to receive a detector signal from the detector array, which describes a dimension, shape and/or position of the second component of the light beam projected on the detector array, and to ascertain from the detector signal a system state of the LiDAR system.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: September 21, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Siegwart Bogatscher, Reiner Schnitzer
  • Patent number: 11119218
    Abstract: A coherent lidar system, a method of assembling the system and a vehicle including the system involve a light source to output a continuous wave, and a modulator to modulate a frequency of the continuous wave and provide a frequency modulated continuous wave (FMCW) signal. The system includes a a splitter to split the FMCW signal to two or more paths, and two or more aperture lenses. At least one of the two or more aperture lenses is associated with each of the two or more paths and is configured to obtain a receive beam resulting from a reflection of an output signal obtained from the FMCW signal.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: September 14, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Scott Singer, Lute Maleki
  • Patent number: 11099260
    Abstract: A light detection and ranging (LIDAR) system includes a first optical source to generate a first optical beam, a first collimating lens to collimate the first optical beam, a first prism wedge of a first prism wedge pair to redirect the first optical beam, and a first focusing lens to focus the first optical beam on a front surface of a second prism wedge of the first prism wedge pair, the second prism wedge to direct the first optical beam toward an output lens.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: August 24, 2021
    Assignee: Aeva, Inc.
    Inventors: Keith Gagne, Mina Rezk
  • Patent number: 11092677
    Abstract: An object of the present invention is to provide a time measurement device that facilitates a circuit layout. A time measurement device (20) of the present invention includes: a plurality of pixels (30) provided side by side in a first direction, and each including a single-photon avalanche diode (SPAD) disposed on a first semiconductor substrate, and each generating a first logic signal (S35) depending on detection timing in the single-photon avalanche diode (SPAD); and a time measurement section (24) that is disposed on a second semiconductor substrate attached to the first semiconductor substrate and measures the detection timing in each of the plurality of pixels (30).
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: August 17, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Koichi Hasegawa
  • Patent number: 11092689
    Abstract: A system for detecting a vehicle includes a light source configured to emit a light signal. The system also includes a receiver sensor configured to receive a reflected light signal based at least in part on the light signal reflected from a plurality of reflectors. The system also includes a controller, the controller configured to identify an arrangement pattern of the plurality of reflectors based at least in part on the reflected light signal and determine that plurality of reflectors are coupled to another vehicle based at least in part on an identification of the arrangement pattern.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: August 17, 2021
    Assignee: Apple Inc.
    Inventor: Micah P. Kalscheur
  • Patent number: 11092690
    Abstract: A vehicle including one or more sensors, a light detection and ranging (lidar) sensor and a lidar prediction system. The one or more sensors include an optical sensor, a radar sensor, or both, configured to capture sensor data of a particular view. The lidar sensor is configured to capture lidar data of the particular view. The lidar prediction system includes a predictive model. The lidar prediction system is configured to generate a predicted lidar frame comprising applying the predictive model to the sensor data and send the predicted lidar frame to an external system.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 17, 2021
    Assignee: Apple Inc.
    Inventors: Peter Meier, Abhishek Sharma