Patents Examined by Anant A Gupta
  • Patent number: 11235165
    Abstract: Described herein are implantable medical devices (IMDs), and methods for use therewith, that enable monitoring of impedance associated with a pathway (e.g., including a lead) used to selectively deliver stimulation pulses to patient tissue. A method involves measuring or storing a first voltage indicative of the energy stored on a reservoir capacitor (Cres) just prior to a stimulation pulse being delivered via the pathway, as well as measuring or storing a second voltage indicative of the energy stored on the Cres just after the stimulation pulse is delivered via the pathway. The method also includes monitoring the impedance associated with the pathway based on a difference between the first and second voltages, which may involve determining a count value indicative of how long it takes to discharge the first voltage to drop to the second voltage, wherein the count value is a surrogate of the impedance associated with the pathway.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: February 1, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Eric C. Labbe, Paul F. Illegems, Cliff C. Nixon
  • Patent number: 11219765
    Abstract: Systems and techniques are disclosed to establish programming of an implantable electrical neurostimulation device for treating pain of a human subject, through the use and adjustment of analgesic stimulation parameters based on trust dynamics and trust measurements. In an example, the system to establish programming of the neurostimulation device performs operations that: determine a trust measurement value that is derived from results of at least one commitment made with a human subject, via observable interactions; determine a modification of at least one neurostimulation programming parameter, based on the trust measurement value; and to cause the implantable neurostimulation device to implement the modification of the at least one neurostimulation programming parameter. Further examples are provided to produce and track the trust measurement value, as well as identify a pain susceptibility value and determine a receptiveness to analgesic effects based on these and other trust dynamics.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 11, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Kozloski, Anup Kalia, Jeffrey Rogers, Sara E. Berger
  • Patent number: 11213238
    Abstract: The various embodiments of the present invention disclose a stand-alone, scalable cardiac health monitoring device for 1-6-12 lead ECG data acquisition and a method of working thereof. The method of monitoring cardiac health condition of a patient comprises of receiving, by a cardiac monitoring device, an electrocardiograph (ECG) input data signals from at least two electrodes attached to the patient, performing, a quality check on acquiring the ECG input data signals, processing the acquired ECG input data signals, encrypting the processed ECG input data signals and transmitting the encrypted ECG signals to one or more external user devices over a wireless communication interface. The acquiring the ECG input data signals comprises of integrating a closed loop Right Leg Drive (RLD) as a shield drive and a cable/electrode shield to reduce noise coupling to the ECG input data signals.
    Type: Grant
    Filed: December 31, 2017
    Date of Patent: January 4, 2022
    Assignee: IMEDRIX SYSTEMS PRIVATE LIMITED
    Inventors: Rajaram Shastri, Nagesh Rangappan, Venkatakrishna Araveti, Niranjan Rayaprolu, Srikanth Jadcherla, Kishore Ramasamy, Lokesh Kumar Kata
  • Patent number: 11207016
    Abstract: A medical probe includes an insertion tube for insertion into a patient body, at least an arm, which is attached to a distal end of the insertion tube, at least a reference electrode coupled to the arm, and multiple electrodes, which are coupled to the arm, surround the reference electrode and are configured to sense electrical signals of body tissues that, when measured relatively to the reference electrode, are indicative of anatomical signals in the patient body.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 28, 2021
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Alexander David Squires, Christopher Thomas Beeckler
  • Patent number: 11207517
    Abstract: A percutaneous electrical phrenic nerve stimulation (PEPNS) system that measures the patient Work of Breathing (WOB) of each type of ventilator breath and determines when to deliver electrical stimulus based upon the measured WOB. The PEPNS system alters its behavior based upon the type and origin of the ventilator breath delivered and provides warnings for certain identified interactions between the ventilator and the patient.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: December 28, 2021
    Assignee: STIMDIA MEDICAL, INC.
    Inventor: John O'Mahony
  • Patent number: 11202922
    Abstract: The invention relates to a device comprising: a light source mounted in a housing, the housing comprising a transparent window opposite the light source; an optical fiber fitted with a connector suitable for detachably engaging with the housing to retain an input surface of the optical fiber opposite the light source via the window; and an interface element made of transparent elastomeric material suitable, in the connected position, for being retained so as to be compressed between the window and the input surface of the optical fiber.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: December 21, 2021
    Assignee: Commissariat à l'Energie Atomique et aux Energies Alternatives
    Inventor: Claude Chabrol
  • Patent number: 11185274
    Abstract: A position tracking system includes an electrical interface and a processor. The electrical interface is configured to communicate with one or more electrodes that are coupled to a distal end of a probe inserted into a heart of a patient. The electrical interface is further configured to receive, from a plurality of electrode-patches attached to a skin of the patient, position signals that are indicative of positions of the one or more electrodes in the heart. The processor is configured to select, based on the position signals, a partial subset of the electrode-patches whose position signals are least-correlated with one another, and to estimate a position of at least one of the electrodes in the heart, based on the position signals received from the selected partial subset of the electrode-patches.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: November 30, 2021
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Assaf Govari
  • Patent number: 11185677
    Abstract: An intravascular fluid movement device that includes an expandable member having a collapsed, delivery configuration and an expanded, deployed configuration, the expandable member having a proximal end and a distal end, a rotatable member disposed radially and axially within the expandable member, and a conduit coupled to the expandable member, the conduit at least partially defining a blood flow lumen between a distal end of the conduit and a proximal end of the conduit, the conduit disposed solely radially inside of the expandable member in a distal section of the expandable member.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: November 30, 2021
    Assignee: SHIFAMED HOLDINGS, LLC
    Inventors: Amr Salahieh, Claudio Argento, Tom Saul, Brady Esch, Colin Mixter, Peter Brown, Anna Kerlo, Daniel Hildebrand, Daniel Varghai
  • Patent number: 11167123
    Abstract: Controllers and methods for heart treatments are disclosed herein. The controller can include a communication module that can send and receive data from heart therapy devices. The controller can include memory including stored instruction. The controller can include a processor. The processor can receive a signal of an impending electrical treatment at a processor. The processor can determine a current operating parameter of a blood pump communicatingly coupled with the processor. The processor can determine an adjustment to the operating parameter of the blood pump to affect an impedance of heart tissue to be affected by the impending electrical treatment. The processor can control the blood pump according to the adjustment to the operating parameter of the blood pump.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: November 9, 2021
    Assignee: TC1 LLC
    Inventors: Rahul Agarwal, Allison Connolly, Yelena Nabutovsky, Julie Prillinger
  • Patent number: 11154249
    Abstract: In some examples, determining a health status includes using an implantable medical device configured for subcutaneous implantation and comprising at least one optical sensor. Processing circuitry of a system comprising the device may determine, for a patient, a current tissue oxygen saturation value based on a first signal received from the at least one optical sensor and a current pulsatile oxygen saturation value based on a second signal received from the at least one optical sensor. The processing circuitry may further compare the current tissue oxygen saturation and current pulsatile oxygen saturation values to corresponding baseline values, determine corresponding heart failure and pulmonary statuses of the patient based on the comparisons, and determine the health status of the patient based on the statuses.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: October 26, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, James K. Carney, Shantanu Sarkar
  • Patent number: 11152664
    Abstract: An electronic device includes a housing, a first printed circuit board (PCB) provided within the housing, a second PCB provided within the housing, and a battery. The second PCB is separate and distinct from the first PCB and is communicatively coupled to the first PCB. The battery is located in a space separating the first PCB and the second PCB. The battery is configured to provide power to the first PCB and the second PCB.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: October 19, 2021
    Assignee: ANEXA LABS LLC
    Inventor: Alexey Reykhert
  • Patent number: 11141586
    Abstract: A system, method, and apparatus for treating a medical condition by applying transcutaneous electrical stimulation to a target peripheral nerve of a subject. Electrical stimulation is applied to the peripheral nerve via a stimulation electrode pattern under closed-loop control in which EMG responses are monitored and used to adjust stimulation parameters. In response to detecting an unacceptable recording, electrical stimulation is applied to the peripheral nerve under open-loop control.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: October 12, 2021
    Assignee: AVATION MEDICAL, INC.
    Inventors: Alexandru Campean, Jeff A. Weisgarber, Mingming Zhang
  • Patent number: 11096825
    Abstract: For the purposes of working on eye tissue, an ophthalmological apparatus comprises a laser source that is configured to produce a pulsed laser beam, a focusing optical unit that is configured to focus the pulsed laser beam into the eye tissue, a scanner system for deflecting the pulsed laser beam onto work target points in the eye tissue, and a measurement system for optically capturing structures in the eye tissue. A circuit controls the measurement system in such a way that the latter captures a cut first outer face of a lenticule to be cut. The circuit controls the scanner system in such a way that the latter guides the pulsed laser beam onto work target points on a second outer face, positioned in relation to the captured first outer face, of the lenticule to be cut, in order to cut the second outer face of the lenticule.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: August 24, 2021
    Assignee: Ziemer Ophthalmic Systems AG
    Inventor: Christian Rathjen
  • Patent number: 11033980
    Abstract: A device for material processing by laser radiation, including a source of laser radiation emitting pulsed laser radiation for interaction with the material, optics focusing the pulsed processing laser radiation to a center of interaction in the material, and a scanning unit shifting the positions of the center of interaction within the material. Each processing laser pulse interacting with the material in a zone surrounding the center of interaction assigned to the laser pulse so that material is separated in the zones of interaction. A control unit controls the scanning unit and the source of laser radiation such that a cut surface is produced in the material by sequential arrangement of zones of interaction. The control unit controls the source of laser radiation and the scanning unit such that adjacent centers of interaction are located at a spatial distance a ?10 ?m from each other.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: June 15, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bischoff, Dirk Muehlhoff, Gregor Stobrawa
  • Patent number: 11013920
    Abstract: A method for inducing an activity of a user's autonomic nervous system is provided. The method includes steps of: (a) on condition that each of the user's reference heart rate information corresponding to each of active states of the user's autonomic nervous system is obtained, an inducing device, if a specific active state of the autonomic nervous system is selected by the user, acquiring first reference heart rate information of the user corresponding to the specific active state of the autonomic nervous system; and (b) the inducing device supporting a first vibration stimulus with a first period corresponding to the first reference heart rate information to be applied to the user, to thereby allow the user's real-time average cardiac interval to be synchronized with the first vibration stimulus.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: May 25, 2021
    Assignee: Seoul National University R&DB Foundation
    Inventors: Kwang Suk Park, Hee Nam Yoon, Jee Hoon Kim, Sang Ho Choi, Hyun Bin Kwon, Yu Jin Lee
  • Patent number: 11000345
    Abstract: A medical instrument includes an instrument shaft with exit holes near a distal end of the shaft, a tool coupled to the distal end of the shaft, and a backend. The backend may include a mechanism that manipulates a drive element that extends through the shaft and couples to the tool, a fluid inlet, and a fluid channel assembly providing fluid communication between the fluid inlet and the proximal end of the shaft. Cleaning fluid is directed into the fluid inlet, through the fluid channel assembly, and into the shaft. A chassis or other structural piece of the backend may form part of the fluid channel assembly.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 11, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Bram Gilbert Antoon Lambrecht, S. Christopher Anderson, Thomas G. Cooper
  • Patent number: 10987181
    Abstract: A manipulation device (20) for a microinvasive medical instrument (10) comprises a recess (47) for receiving a proximal region (72) of an electrically conductive transmission device (70) for transmitting electrical power and at least either a force or a torque to a distal end of a microinvasive medical instrument (10), and a contacting device (50) for producing an electrical contact to a transmission device (70) arranged in the recess (47). The contacting device (50) has a plurality of contact faces (57) for simultaneously bearing on a surface (75) of a transmission device (70) arranged in the intended manner in the recess (47).
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 27, 2021
    Assignee: Karl Storz SE & Co. KG
    Inventor: Uwe Wittke
  • Patent number: 10966662
    Abstract: Physiological signal processing systems include a photoplethysmograph (PPG) sensor that is configured to generate a physiological waveform, and an inertial sensor that is configured to generate a motion signal. A physiological metric extractor is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor. The physiological metric extractor includes an averager that has an impulse response that is responsive to the strength of the motion signal. Related methods are also described.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: April 6, 2021
    Assignee: Valencell, Inc.
    Inventor: Eric Douglas Romesburg
  • Patent number: 10965093
    Abstract: Methods and systems enabling the real-time monitoring of a light-induced procedure in a biological medium, and/or the acquisition of information related to this biological medium are provided. In some implementations, the light beam used for the procedure is modulated at a modulation frequency selected in view of the photoacoustic frequency response associated with the procedure. The photoacoustic feedback signal from the medium during the procedure is then monitored. This monitoring may involve filtering the photoacoustic feedback signal around the selected feedback modulation frequency. Ratiometric comparisons of the contribution of different frequencies to the photoacoustic feedback signal are also considered.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 30, 2021
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Robert B. Brown, Suzie Dufour, Pascal Gallant, Ozzy Mermut, Pascal Deladurantaye
  • Patent number: 10946212
    Abstract: The invention relates to an implantable device for optical stimulation of an organ of the human or animal body, having a probe comprising a tube made of a first transparent material, this tube being hermetically closed by at least one stopper; at least one light source arranged inside the tube; a plurality of electrical connection elements extending through the stopper and electrically connecting said at least one light source to the outside of the tube; and a linking cable arranged outside the tube and connected to said connection elements.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: March 16, 2021
    Assignee: Commissariat à l'Energie Atomique et aux Energies Alternatives
    Inventors: Claude Chabrol, Alim-Louis Benabid