Patents Examined by Andrew Lee
  • Patent number: 11467061
    Abstract: Aspects of the present disclosure describe a method for estimating mode field distribution in optical fibers from guided acoustic-wave Brillouin scattering wherein light for which the optical mode-field distribution is determined remains in the optical fibers and the distribution is made for light inside the fiber, and not at a fiber/air interface or other perturbation points to the fiber resulting in a more accurate representation of the optical mode-field distribution in the fiber. Since light is always in the fiber during the determination, no complicated fiber preparation steps or procedures are required and the mode-field distribution is determined as an average distribution along the length of the fiber under test.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: October 11, 2022
    Inventors: Fatih Yaman, Eduardo Mateo Rodriguez, Shinsuke Fujisawa, Hussam Batshon, Kohei Nakamura, Takanori Inoue, Yoshihisa Inada, Takaaki Ogata
  • Patent number: 11467282
    Abstract: A laser radar system using collocated laser beams to unambiguously detects a range of a target and a range rate at which the target is moving relative to the laser radar system. Another aspect of various embodiments of the invention may relate to a laser radar system that uses multiple laser radar sections to obtain multiple simultaneous measurements (or substantially so), whereby both range and range rate can be determined without various temporal effects introduced by systems employing single laser sections taking sequential measurements. In addition, other aspects of various embodiments of the invention may enable faster determination of the range and rate of the target, a more accurate determination of the range and rate of the target, and/or may provide other advantages.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: October 11, 2022
    Assignee: Aeva, Inc.
    Inventors: Richard L. Sebastian, Kendall L. Belsley
  • Patent number: 11468854
    Abstract: Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may include feedforward control and a feedback control for a power supply for the light-emitting diodes. The feedforward control may include host circuitry for the device that determines a maximum zone current, a maximum row current, and the maximum row-to-row current step for an upcoming backlight frame while a current backlight frame is being executed. A headroom voltage for the upcoming backlight frame is determined based on the maximum zone current, the maximum row current, and/or the maximum row-to-row current step and provided to the power supply so that the power supply can settle at a corresponding supply voltage before the upcoming backlight frame is executed. The feedback control utilizes dynamic thresholds determined for each backlight frame to fine tune the feedforward-determined headroom voltage.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: October 11, 2022
    Assignee: Apple Inc.
    Inventors: Vehbi Calayir, James E. Brown
  • Patent number: 11448586
    Abstract: The present disclosure relates to an inspection apparatus, a sensing apparatus, a sensitivity control apparatus, an inspection method, and a program that perform inspection with improved accuracy. The inspection apparatus includes a detection section for detecting a plurality of different wavelength region components of ambient light reflected from an inspection target to be inspected, and a control section for controlling the sensitivity of each of the different wavelength region components. The control section controls the sensitivity by calculating a histogram indicating the detection level in every wavelength region of light reflected from the inspection target that is detected by the detection section, and determining, based on histograms of particular spectroscopic components, whether or not the sensitivity is properly set for the detection section. The present technology is applicable, for example, to an inspection apparatus that inspects vegetation.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: September 20, 2022
    Assignee: Sony Group Corporation
    Inventors: Masatoshi Takashima, Yoshihiro Murakami, Hiroshi Mori
  • Patent number: 11442009
    Abstract: A flow cell for use with an analytical device having a measurement surface onto which a fluid sample to be measured can be received comprises: a housing comprising an interface for connecting to an analytical device; a fluid chamber provided in the housing, the fluid chamber comprising sidewalls at least partly defining an internal volume for receiving a multiphase fluid sample and an opening arranged so as to provide a multiphase fluid sample received in the internal chamber volume to a measurement surface of an analytical device when the housing is connected to the analytical device; and an agitation device. The agitation device comprises an agitation mechanism adapted to agitate a multiphase fluid sample within the internal volume of the fluid chamber and cause movement of the fluid through and within the opening thereby providing fluid to a measurement surface of an analytical device. The agitation mechanism is separated from the internal volume by a barrier wall.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: September 13, 2022
    Assignee: XYLEM EUROPE GMBH
    Inventor: Valdis Robin Vesma
  • Patent number: 11435477
    Abstract: A distance measurement device (2000) generates transmission light by modulating an optical carrier wave. The distance measurement device (2000) transmits the generated transmission light, and receives reflected light acquired by the transmission light being reflected by a measured object (10). The distance measurement device (2000) generates a first beat signal by causing the transmission light to interfere with reference light. The distance measurement device (2000) generates a second beat signal by causing the reflected light to interfere with the reference light. The distance measurement device (2000) calculates a distance to the measured object (10), based on a difference between the first beat signal and the second beat signal.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 6, 2022
    Assignee: NEC CORPORATION
    Inventor: Hidemi Noguchi
  • Patent number: 11422087
    Abstract: Disclosures of the present invention describe a device for measuring retina safety improvement index, comprising: a light receiving unit, a first data processing unit and a second data processing unit. The light receiving unit receives a first visible light and a second visible light that is obtained by letting the first visible light pass through a blue light blocking product. The first data processing unit calculates a first maximum permissible exposure (MPE) of the first visible light and a second MPE of the second visible light. The second data processing unit calculates a retina safety improvement (RSI) index based on the first MPE and the second MPE. As such, by using this device, a consumer is facilitated to know how much eyes-protecting ability does a specific blue light blocking product have, without needing to read any numeric value of blue light filtering percentage and/or unfamiliar spectrogram.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 23, 2022
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventor: Jwo-Huei Jou
  • Patent number: 11419042
    Abstract: A wireless device receives message(s) comprising configuration parameters of cells comprising a first secondary cell. The wireless device may receive a downlink transport block comprising MAC CE(s) indicating activation of the first secondary cell. A MAC CE, in the MAC CE(s), may comprise a first field with a first value indicating triggering transmission of reference signal(s) that are used in activation of the first secondary cell. The wireless device may activate the first secondary cell based on the reference signal(s).
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: August 16, 2022
    Assignee: PanPsy Technologies, LLC
    Inventor: Alireza Babaei
  • Patent number: 11415406
    Abstract: A laser apparatus, a measurement apparatus, and a measurement method are provided in which the laser apparatus outputs a frequency-modulated laser beam with a plurality of modes and includes: an optical cavity that has a gain medium for amplifying a light to be input, and an optical SSB modulator for shifting a frequency of the light amplified by the gain medium: and a control part that controls the optical SSB modulator to shift a frequency of a light to be input to the optical SSB modulator.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: August 16, 2022
    Assignees: Mitutoyo Corporation, 3D Innovation Co., Ltd
    Inventors: Shinji Komatsuzaki, Tomotaka Takahashi, Hiroki Ujihara
  • Patent number: 11415407
    Abstract: Embodiments of the present invention provide a method and apparatus for frequency-domain optical interferometry imaging. Embodiments of the invention include an apparatus comprising a line-shaping optical element for directing optical radiation into a line illumination, an imaging optical element for receiving optical radiation comprising radiation reflected from a target sample and a reference point associated with the target sample, and a detection unit for measuring common path interferences between a plurality of reflections from the target sample and the reference point. Embodiments of the invention include a method comprising directing radiation into a line illumination, directing the line illumination towards a target sample, receiving radiation reflected from the target sample at a detection unit, and measuring common path interferences between a plurality of reflections at the target sample and a reference point.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 16, 2022
    Assignee: THE UNIVERSITY OF LIVERPOOL
    Inventors: Yaochun Shen, Yalin Zheng, Yue Dong, Samuel Lawman
  • Patent number: 11415419
    Abstract: A multifunctional photonic integrated circuit (PIC) suitable for the manufacture of fiber optic gyroscopes (FOG) is described. The PIC is constructed and arranged to exhibit a scale factor of substantially high stability and accuracy. The PIC may comprise, for example, a high optical birefringence and low propagation loss waveguide, a low wavelength-dependent split-ratio Y-junction, a high extinction ratio linear polarizer, and high efficiency fiber-to-waveguide mode-size converters. Considerations for ensuring high-level FOG performance are addressed by, for example, optimization of waveguide structure, functional requirements for individual components, and combined effects of the circuit layout. A high-end, tactical grade FOG may be built using the disclosed PIC, after connecting to polarization maintaining optical fiber coil, a light source, and a photodetector.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: August 16, 2022
    Assignee: KVH Industries, Inc.
    Inventors: Liming Wang, Daniel R. Halstead, Thomas D. Monte, Martin A. Kits van Heyningen
  • Patent number: 11412511
    Abstract: Disclosed herein are a system, a method and a device for switching between different communications protocols. A head wearable display can transmit, to a console during a first session interval, a first request to switch from a first link using a first communication protocol to a second link using a second communication protocol. The first request can include at least one characteristic of the first link. The head wearable display can receive, from the console, a first response to the first request, to perform a switch from the first link to the second link. The first response can indicate a wake up time and a second session interval to perform the switch. The head wearable display can switch from the first link to the second link in the second session interval and after the wake up time.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: August 9, 2022
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Gang Lu, Nihar Doshi, Jiwon Steve Han, Xiaoguang Wang, Dong Zheng, Chunyu Hu, Qi Qu
  • Patent number: 11405908
    Abstract: The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure discloses a signaling method and apparatus for properly increasing a control channel detection complexity of a terminal in order to efficiently detect a control channel for performing coordinated transmission such as non-coherent joint transmission (NC-JT).
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 2, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoondong Noh, Taehyoung Kim, Hyoungju Ji, Jinhyun Park, Heecheol Yang
  • Patent number: 11402935
    Abstract: A display device is disclosed, which has excellent touch sensitivity due to a corner area of a screen, wherein the corner area is formed to be curved. The display device comprises a substrate including a touch area having a corner touch area; a plurality of gate lines arranged on the substrate in a first direction; a plurality of data lines arranged in a second direction crossing the first direction; a plurality of pixel areas defined by crossing the plurality of gate lines and the plurality of data lines; a plurality of common electrodes arranged to overlap at least one pixel area; and a plurality of touch link lines electrically connected with the plurality of common electrodes and extended in a direction parallel with the first direction or the second direction, wherein, among the plurality of common electrodes, the first common electrodes arranged on the corner touch area have shape different from that of the second common electrodes arranged on the other touch area except the corner touch area.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: August 2, 2022
    Assignee: LG Display Co., Ltd.
    Inventor: JunYeob Lee
  • Patent number: 11385044
    Abstract: The range of measurement in spectrally controlled interferometry (SCI) is extended by superimposing multiple modulations on the low-coherence light used for the measurement. Optimally, a spectrally controllable light source modulated sinusoidally with low spectral frequency is combined with a delay line, such as provided by a Michelson interferometer. The resulting light is injected into a Fizeau interferometer to generate localized fringes at a distance corresponding to the effect of the spectrally modulated source combined with the optical path difference produced by the delay line. The combination provides a convenient way to practice SCI with all its advantages and with a range that can be extended to the degree required for any practically foreseeable application. Alternatively, a single source capable of multiple modulations can be used instead of a separate second modulator component.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: July 12, 2022
    Assignee: APRE INSTRUMENTS, INC.
    Inventor: Piotr Szwaykowski
  • Patent number: 11385057
    Abstract: Systems and methods for embodiments having an extra thick ultraviolet durability coating are described herein. For example, a system may include a laser block assembly. The system may also include a cavity in the laser block assembly. Further, the system may include a plurality of multilayer mirrors in the cavity. In certain embodiments, at least one multilayer mirror of the plurality of multilayer mirrors may include a plurality of alternating layers of a first optical material having a high index of refraction and a second optical material having a first low index of refraction. Additionally, the at least one multilayer mirror may include a multilayer durability coating disposed on the plurality of alternating layers.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: July 12, 2022
    Assignee: Honeywell International Inc.
    Inventors: Steven C. Albers, Dean Eivind Johnson, Randy Ramberg
  • Patent number: 11385188
    Abstract: A system that may include a radiation source to generate a beam of coherent radiation; traveling lens optics to focus the beam to generate multiple spots on a surface of a sample and to scan the spots together over the surface; collection optics to collect the radiation scattered from the multiple spots and to focus the collected radiation to generate a pattern of interference fringes; and a detection unit to detect changes in the pattern of interference fringes.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: July 12, 2022
    Assignee: APPLIED MATERIAL ISRAEL, LTD.
    Inventors: Amir Shoham, Yoav Berlatzky, Haim Feldman
  • Patent number: 11378401
    Abstract: A polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and an angular velocity measurement method thereof. In the system, highly stable optical carrier microwaves are generated in a clockwise direction and a counterclockwise direction in the same resonant cavity, and are used to measure the angular velocity of rotation of a carrier apparatus. A fully reciprocal ring-shaped resonant cavity structure is used to achieve a fully reciprocal bi-directional optical resonance system. A polarization state separation technique is used to separate an optical signal into two wavelengths, and optical signals with perpendicular polarization states are transmitted in opposite directions in a sensing ring, thereby improving the measurement capability of the sensing ring. Bi-directional optical carrier microwave resonance is achieved by using a phase tracking structure and a regenerative mode locking technique.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: July 5, 2022
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Kaichen Song, Jinlong Yu, Lingyun Ye, Ju Wang
  • Patent number: 11373607
    Abstract: A driving method of display device for a display device capable of reducing flicker due to refresh rate variation includes: determining whether a processor of the display device is generating a vertical blank interval of an image signal, wherein said vertical blank interval is next to a last frame data period thereof, and the last frame data period is for a last frame to be displayed by a display panel; and activating a data line of the display panel with a balancing voltage related to data of a line of the last frame when the processor is generating the vertical blank interval, wherein a plurality of sub-pixels of the display panel connects to the data line, the data of the line of the last frame are sequentially transmitted to the plurality of sub-pixels in the last frame data period for displaying the last frame. Said display device is also disclosed.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: June 28, 2022
    Assignee: Novatek Microelectronics Corp.
    Inventors: Yu-Hung Su, Vans Shih, Yen-Tao Liao
  • Patent number: 11360620
    Abstract: A touch display device includes: a touch panel including N touch electrodes; a sensor sensing unit block including M sensor sensing units and to sense two or more touch electrodes among the N touch electrodes; a front multiplexer to select two or more touch electrodes from among the N touch electrodes and connect the selected touch electrodes to the sensor sensing unit block. The front multiplexer is configured to select M touch electrodes, which are disposed in a sensing active region corresponding to a first sensing period, from among the N touch electrodes, and to match and connect the M touch electrodes to the M sensor sensing units, wherein M is greater than or equal to 2, and N is greater than M. The M sensor sensing units are configured to simultaneously sense the M touch electrodes disposed in the sensing active region during the first sensing period.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 14, 2022
    Assignee: LG Display Co., Ltd.
    Inventors: KiYong Kim, HyeongWon Kang, Youngwoo Jo, HongJu Lee