Patents Examined by Angela J. Martin
  • Patent number: 10978721
    Abstract: A battery separator includes a polyolefin microporous membrane and a porous layer placed on at least one surface of the polyolefin microporous membrane. The polyolefin microporous membrane has a variation range of an F25 value in a longitudinal direction of 1 MPa or less. The F25 value indicates a value obtained by dividing a load value measured at 25% elongation of a specimen with use of a tensile tester by a cross-sectional area of the specimen. The porous layer contains a fluorine-based resin and an inorganic particle and has an average thickness T(ave) of 1 to 5 ?m.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 13, 2021
    Assignee: Toray Industries, Inc.
    Inventors: Naoki Mizuno, Masami Sugata
  • Patent number: 10978740
    Abstract: The objective of the present invention is to provide an electrolyte solution of which electrolyte salt concentration is high and by which cycle characteristics hardly deteriorate and battery lifetime can be extended, and a lithium ion secondary battery which contains the above electrolyte solution. The electrolyte solution of the present invention comprises an electrolyte salt and a solvent, wherein a concentration of the electrolyte salt is more than 1.1 mol/L, the electrolyte salt contains a compound represented by the following formula (1): (XSO2) (FSO2)NLi (1) (wherein X is a fluorine atom, a C1-6 alkyl group or a C1-6 fluoroalkyl group), and the solvent contains a cyclic carbonate.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 13, 2021
    Assignee: NIPPON SHOKUBAI CO., LTD.
    Inventors: Hiroyuki Mizuno, Kazuhisa Hirata, Takeo Kawase, Izuho Okada, Hiromoto Katsuyama, Miwako Tominaga, Masayuki Okajima
  • Patent number: 10971722
    Abstract: A method of producing a powder mass for a lithium battery, comprising: (a) mixing graphene sheets and a sulfonated elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of an anode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing or curing the precursor to form the powder mass comprising multiple particulates, wherein at least one of the particulates is composed of one or a plurality of the particles encapsulated by a thin layer of a sulfonated elastomer/graphene composite having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and an electrical conductivity from 10?7 S/cm to 100 S/cm.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: April 6, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10964936
    Abstract: Provided is an anode active material electrode for a lithium battery. This electrode layer comprises multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of sulfonated elastomer/graphene composite having from 0.01% to 50% by weight of graphene sheets dispersed in a sulfonated elastomeric matrix material, wherein the encapsulating shell composite has a thickness from 1 nm to 10 ?m, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm when measured at room temperature. The anode active material is preferably selected from Si, Ge, Sn, SnO2, SiOx, Co3O4, Mn3O4, etc., which has a specific capacity of lithium storage greater than 372 mAh/g (the theoretical lithium storage limit of graphite).
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: March 30, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10957902
    Abstract: The invention relates to novel material comprising X/hard carbon composite and to a process for their preparation, the process comprising the steps: a) forming a mixture comprising i) one or more hard carbon-starting materials, ii) one or more starting materials which comprise one or more of the component elements of X, and optionally iii) one or more secondary carbon-containing materials; and b) heating the resulting mixture at 100° C. to 1500° C. to yield the material comprising the X/hard carbon composite; wherein X comprises one or more component elements selected from antimony, tin, phosphorus, sulfur, boron, aluminium, gallium, indium, germanium, lead, arsenic, bismuth, titanium, molybdenum, selenium, tellurium, cobalt and nickel and wherein X is present in an amount of at least 5% by weight of the material comprising the X/hard carbon composite.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: March 23, 2021
    Assignee: FARADION LIMITED
    Inventors: Jeremy Barker, Yang Liu
  • Patent number: 10950905
    Abstract: Disclosed is a battery module, as well as a battery pack and a vehicle comprising the same. The battery module includes a plurality of battery cells arranged side by side to face each other in at least one direction, a cooling plate located below the plurality of battery cells, and a heat transfer tape adhered to the battery cells to transfer heat of the battery cells to the cooling plate.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 16, 2021
    Assignee: LG Chem, Ltd.
    Inventors: Mi-Geum Choi, Dal-Mo Kang, Jeong-O Mun, Yoon-Koo Lee
  • Patent number: 10938064
    Abstract: Sulfide-type compound particles microparticulated, having an argyrodite-type crystal structure, and including lithium (Li), phosphorus (P), sulfur (S), and a halogen (Ha). As sulfide-type compound particles that can inhibit generation of hydrogen sulfide gas even upon contact with moisture in the atmosphere, provided are sulfide-type compound particles having D50 in a volume-basis particle size distribution of 50 ?m or less and having an occupancy of sulfur (S) and the halogen (Ha) in the S3 (4a) site, as calculated by a neutron diffraction measurement, of 85% or more.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 2, 2021
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Takahiro Ito, Tsukasa Takahashi, Masaru Hyakutake, Teruaki Yagi
  • Patent number: 10938068
    Abstract: This application provides a lithium-ion battery and an apparatus. The lithium-ion battery includes an electrode assembly and an electrolyte. The electrode assembly includes a positive electrode plate, a negative electrode plate, and a separator. A positive active material of the positive electrode plate includes Lix1Coy1M1-y1O2-z1Qz1, where 0.5?x1?1.2, 0.8?y1<1.0, 0?z1?0.1, M is selected from one or more of Al, Ti, Zr, Y, and Mg, and Q is selected from one or more of F, Cl, and S. The electrolyte contains an additive A, an additive B, and an additive C. The additive A is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential. The additive B is an anhydride compound. The additive C is a halogen substituted cyclic carbonate compound.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 2, 2021
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Yao Jiang, Chunhua Hu, Tiancheng Yi, Shushi Dou, Chengdu Liang
  • Patent number: 10930915
    Abstract: A battery assembly includes a battery cell with leads extending from the battery and a circuit including a substrate and contacts that extend from the substrate. The leads are coupled to the contacts by mechanical or adhesive bonds located on sections of the contacts extending from the substrate. In various implementations, the circuit may include a variety of different components coupled to the substrate. Such components may be operable to perform a variety of functions such as regulating, monitoring, controlling, and/or otherwise managing the battery cell. Such components may include one or more battery management units, safety circuits, capacity gauges, and/or other components.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: February 23, 2021
    Assignee: APPLE INC.
    Inventors: Tyler S. Bushnell, Charles W. Werley, Richard M. Mank, Xiaoyun Hu, Thai T. Ton, George V. Anastas, Vijayasekaran Boovaragavan
  • Patent number: 10930980
    Abstract: An additive formulation for a lithium ion battery is provided, which includes an ionic conductor and a compound having a maleimide structure. An electrode slurry composition is also provided, which includes an active material, a conductive additive, an adhesive, and an additive formulation containing an ionic conductor and a compound having a maleimide structure modified by a compound having a barbituric acid structure.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: February 23, 2021
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Han Li, Li-Chun Chen, Ming-Yi Lu, Jen-Chih Lo, Guan-Lin Lai, Chang-Rung Yang, Jung-Mu Hsu
  • Patent number: 10910613
    Abstract: An exemplary retention assembly includes a plurality of battery cells, a heat exchange structure, and a strap that pulls together the heat exchange structure and the plurality of battery cells.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 2, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Patrick Daniel Maguire, Brian Utley
  • Patent number: 10892503
    Abstract: In a fuel cell system including a fuel cell, an anode gas supply channel, an anode gas discharge channel, an injector, a pressure sensor, and a controller, the controller controls the injector so that the pressure on the downstream side of the injector in the anode gas supply channel and does not become lower than target pressure, closes a discharge valve when the amount of discharged anode gas reaches a target discharge amount, the amount of discharged anode gas estimated based on the amount of decrease in the value of the pressure in a first period of the discharge valve open-period, the first period being a period from the point of time after the injector stops the injection and when variation of the pressure falls within a predetermined range to the point of time when the injector next starts the injection, and increases a ratio of the first period to the drive cycle by controlling, during the discharge valve open-period, at least one of the anode gas supply rate of the injector, the amount of electric po
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: January 12, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Okuyoshi, Toshihiro Egawa
  • Patent number: 10886548
    Abstract: Systems, methods, and apparatus configured for the mitigation of hydrogen accumulation within electrochemical systems are generally described. The systems, methods, and apparatus described herein can be, according to certain embodiments, configured to be part of an electrochemical system in which hydrogen is generated (e.g., as a reaction byproduct).
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: January 5, 2021
    Assignee: L3 Open Water Power, Inc.
    Inventors: Thomas B. Milnes, Thomas Humplik, Ian S. McKay
  • Patent number: 10879573
    Abstract: An energy storage apparatus includes: one or more energy storage devices; and a first outer covering and a second outer covering arranged outside said one or more energy storage devices. The energy storage apparatus further includes: a weld portion which is a joint portion between the first outer covering and the second outer covering formed by joining the first outer covering and the second outer covering to each other by welding; a heat-susceptible object; and a heat shielding portion arranged between the weld portion and the heat-susceptible object.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: December 29, 2020
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventor: Shogo Tsuruta
  • Patent number: 10879524
    Abstract: A positive electrode for a rechargeable lithium battery, includes a current collector including pores on a surface thereof; and a positive active material layer on the current collector and including a positive active material, the positive active material including a lithium metal compound including primary particles and secondary particles including agglomerations of the primary particles, an average diameter of the pores of the current collector being greater than an average particle diameter (D50) of the primary particles and less than an average particle diameter (D50) of the secondary particles.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 29, 2020
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Jeong-Woo Han, Sumihito Ishida, Jung-Woo An
  • Patent number: 10873079
    Abstract: A low resistance multivalent metal anode is provided. The metal is present in the anode as a Riecke highly active particle. Anode resistivity of 1000 ?·cm2 or lower can be obtained. Metals employed include magnesium, calcium, zinc and aluminum. Electrochemical cells containing the low resistance multivalent metal anodes are also provided.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: December 22, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Claudiu B. Bucur, John G. Muldoon
  • Patent number: 10862091
    Abstract: An electrochemical device of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. The separator includes a first porous layer composed mainly of a thermoplastic resin and a second porous layer composed mainly of insulating particles with a heat-resistant temperature of 150° C. or higher. The first porous layer is disposed to face the negative electrode.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: December 8, 2020
    Assignee: Maxell Holdings, Ltd.
    Inventors: Hideaki Katayama, Toshihiro Abe, Nobuaki Matsumoto
  • Patent number: 10854891
    Abstract: A separator plate for an electrochemical system may have at least one passage opening for forming a media channel for feeding or discharging media. The system may also have at least one bead arrangement arranged around the at least one passage opening, for the purpose of sealing the passage opening. At least one of the flanks of the bead arrangement may have at least one opening for conducting a medium through the bead flank. The system may also have at least one guide channel that is connected, on an exterior of the bead arrangement, to the openings in the bead flank and is fluidically connected to a bead interior via the opening in the bead flank. The guide channel is designed such that a guide channel width, determined parallel to the flat surface plane of the separator plate, increases at least in some sections in the direction of the bead arrangement.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: December 1, 2020
    Assignee: REINZ-DICHTUNGS-GMBH
    Inventors: Rainer Glueck, Claudia Kunz, Ahmet Oruc, Andre Speidel, Stephan Wenzel
  • Patent number: 10833354
    Abstract: A lithium (Li) ion battery includes a first electrode with a second electrode, and a shutdown polymer additive on an outer surface of the first electrode. The shutdown polymer additive includes at least two polyethylene layers, each polyethylene layer comprising a plurality of polyethylene microspheres. Each polyethylene microsphere is wrapped with carbon nanotubes. The polyethylene microspheres interconnect with each other such that the carbon nanotubes form a conductive network. The polyethylene layers are provided at predetermined areas of the outer surface of the first electrode.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: November 10, 2020
    Assignees: Airbus Singapore Private Limited, Singapore University of Technology and Design
    Inventors: Zhixiang Huang, Glenn Joey Sim, Hui Ying Yang, Jeck Chuang Tan
  • Patent number: 10833324
    Abstract: A method for fabricating an electrode, includes: determining a thickness of an active layer; selecting a lithium (Li) foil having a specified thickness; determining a Li layer pattern for the Li foil based on a portion of a surface of the active layer to be covered by the Li foil; and pressing the Li layer pattern into the surface of the active layer.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 10, 2020
    Assignee: LICAP TECHNOLOGIES, INC.
    Inventor: Linda Zhong