Patents Examined by Angela M Hoffa
  • Patent number: 11026660
    Abstract: A displacement measurement apparatus includes an ultrasound sensor transmitting ultrasounds to an object in accordance with a drive signal, and detecting ultrasound echo signals generated in the object to output echo signals; a driving and processing unit supplying the drive signal to the sensor, and processing the echo signals from the sensor to obtain ultrasound echo data; and a controller controlling the driving and processing unit to yield an ultrasound echo data frame at each of plural different temporal phases based on the ultrasound echo data obtained by scanning the object. The ultrasound echo data has one of local single octant spectra, local single quadrant spectra, and local single half-band-sided spectra in a frequency domain. The ultrasound echo data is obtained from plural same bandwidth spectra.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: June 8, 2021
    Inventor: Chikayoshi Sumi
  • Patent number: 11027154
    Abstract: An apparatus is disclosed for thermal therapy in a male prostate patient. The apparatus includes a long tubular element that is to be inserted into a patient's urethra so that a first tip end of it reaches up into the patient's diseased prostate. The elongated portion includes a narrow cylindrical tube within which an ultrasonic array is disposed along the long axis of the cylinder. Fluid is pumped into and out of a treatment zone of said patient as needed to control a temperature of a region in said treatment zone. A motorized driver is used to controllably rotate said elongated portion and the ultrasound array therein about the long axis of the apparatus so as to deliver acoustic energy to said diseased tissue. Various control and monitoring components may be used in conjunction with the present apparatus to design, control, and terminate the therapy.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: June 8, 2021
    Assignee: Profound Medical Inc.
    Inventors: Ron Kurtz, Cameron Mahon, Sean Donaldson
  • Patent number: 11020058
    Abstract: A system for calculating blood pressure may include a sensor system and a control system. The control system may be capable of controlling one or more sensors of the sensor system to take at least two measurements, the at least two measurements including at least one measurement taken at each of two or more different measurement elevations of a subject's limb. In some examples, the control system may be capable of determining a blood flow difference based on the at least two measurements, of determining a hydrostatic pressure difference based on the two or more different elevations of the at least two measurements and of estimating a blood pressure based on one or more values of blood flow, the hydrostatic pressure difference and the blood flow difference.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: June 1, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Lars Lading, David Boettcher Baek
  • Patent number: 10993625
    Abstract: Method for automatic detection of inflammation or functional disorder according to temperature asymmetry estimation in contralateral body parts is presented. Simultaneously recorded thermogram and the optical image of the inspected and contralateral body parts are sent to the processing unit, where they are stored, processed, and analyzed. Method automatically detects outlines of body parts in thermograms and optical images. Grid of points of interest is distributed inside the inspected and the contralateral body part's outline. Temperature maps are calculated according to both grids points and the temperature disparity map is estimated. The set of inflammation regions is obtained by analyzing the temperature disparity map and collecting adjacent points containing temperature differences surpassing the threshold. This is non-invasive and non-contact inspection method, suitable for real world environments with natural home or health care institutions background.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: May 4, 2021
    Assignee: UAB DIABETIS
    Inventors: Urte Steikuniene, Gintare Marine, Rytis Zajanckauskas, Jonas Guzaitis
  • Patent number: 10912523
    Abstract: A method includes receiving a first set of image data representing passageways at a first cyclical motion state, receiving a second set of image data representing the passageways at a second cyclical motion state, receiving pose data for points describing a shape of an instrument, and comparing the shape of the instrument to the first and second sets of image data. The comparing includes assigning match scores to the sets of image data by comparing each to the shape of the instrument and determining a selected set of image data that matches the shape. The method further includes identifying a phase of a cyclical anatomical motion, generating a command signal indicating an intended movement of the instrument, adjusting the command signal to include an instruction for a cyclical instrument motion of the instrument based on the phase of the cyclical anatomical motion, and causing the intended movement of the instrument.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: February 9, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Prashant Chopra, Vincent Duindam, Caitlin Donhowe, Tao Zhao, Timothy Soper, Federico Barbagli
  • Patent number: 10898163
    Abstract: Provided are an ultrasound imaging apparatus and a method of operating the same. The ultrasound imaging apparatus may generate a plurality of color Doppler mode images by extracting a plurality of pieces of ensemble data from among ultrasound data acquired from the object.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 26, 2021
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventor: Deok-gon Kim
  • Patent number: 10893912
    Abstract: Embodiments of the present disclosure provide a surgical robot system may include an end-effector element configured for controlled movement and positioning and tracking of surgical instruments and objects relative to an image of a patient's anatomical structure. In some embodiments the end-effector may be tracked by surgical robot system and displayed to a user. In some embodiments the end-effector element may be configured to restrict the movement of an instrument assembly in a guide tube. In some embodiments, the end-effector may contain structures to allow for magnetic coupling to a robot arm and/or wireless powering of the end-effector element. In some embodiments, tracking of a target anatomical structure and objects, both in a navigation space and an image space, may be provided by a dynamic reference base located at a position away from the target anatomical structure.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: January 19, 2021
    Assignee: Globus Medical Inc.
    Inventors: Neil R. Crawford, Nicholas A. Theodore, Mitchell Foster, Norbert Johnson, Timothy Moulton, Kevin Zhang, Jeffrey Forsyth, Chris Major, Robert LeBoeuf, David Cleary
  • Patent number: 10863969
    Abstract: According to aspects of the present disclosure, a system for visualizing a target area may include an elongate shaft. The elongate shaft may include a distal portion, a lumen that extends longitudinally through the distal portion, and an opening at the distal end of the distal portion. The opening may be in communication with the lumen. The system also may include a visualization assembly housed within the distal portion of the elongate shaft. The visualization assembly may include a transducer array having a field of view in which the transducer array transceives sound waves. The field of view of the transducer array may cover at least part of the distal portion of the elongate shaft and the target area to facilitate visualization of the part of the distal portion of the elongate shaft and the target area.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 15, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Mark D. Wood, Paul D. Aquilino, Ryan Hartman
  • Patent number: 10856740
    Abstract: A thermoacoustic imaging device is provided having a transmitter configured to provide an electromagnetic transmit signal (e.g. a continuous sinusoidal signal) to an object being imaged. The transmit signal is a modulated continuous-wave signal based on a carrier frequency signal fc modulated at a modulation frequency at or near fm. The detector is further configured to receive an acoustic signal from the object being imaged, and is responsive to acoustic frequencies at or near 2fm. A non-linear thermoacoustic effect in the object being imaged generates the acoustic signal from the object being imaged. Spectroscopic maps could be generated and imaged object could be analyzed. The device enhances signal-to-noise ratio of the reconstructed image and reduces the requirement of peak power in thermoacoustic imaging systems. In addition, the generated pressure of the imaged object is separated from microwave leakage and feedthrough in frequency through the nonlinear thermoacoustic effect.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: December 8, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mohammad Amin Arbabian, Hao Nan
  • Patent number: 10856839
    Abstract: Dynamically identifying a stationary body of fluid (102) within a test volume by scanning within the volume can entail using a first part of a pulse sequence to acoustically interrogate a region within the volume to detect pre-existing movement (124) and, via a separate acoustic interrogation constituting the second part of the pulse sequence, acoustically interrogating the region to distinguish solid from fluid. The scanning is with both interrogations as a unit, so as to span the volume with the interrogations. The body is identified, dynamically based on an outcome of the interrogations. The scanning may span, for the identifying, a current field of view (116), including normal tissue, within an imaging subject. The procedure, from scanning to identifying, may be performed automatically and without need for user intervention, although the user can optionally change the field of view to further search for stationary fluid.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 8, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Balasundar Iyyavu Raju, Ajay Anand, John Petruzzello
  • Patent number: 10849694
    Abstract: The invention relates to a method for displaying the position and orientation of a linear instrument (1) navigated with respect to a 3D medical image (V), wherein: said linear instrument (1) is coupled to a guide (2); the guide (2) is tracked by a navigation system with respect to the 3D image (V); a plane (4) containing the axis of the linear instrument (1) is virtually attached to the guide (2); a slice reformatted in the 3D image and containing said plane (4) is displayed. Another object of the invention is a system for carrying out said method.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: December 1, 2020
    Assignee: IMACTIS
    Inventors: Stephane Lavallee, Lionel Carrat
  • Patent number: 10849595
    Abstract: An imaging apparatus is disclosed for diagnosis including a plurality of transmitting and receiving units, an error of a scale of a tomographic image to be generated is reduced. The imaging apparatus can include including acquisition means for acquiring a propagation velocity of an ultrasound signal of a flushing liquid, generation means for generating ultrasound line data based on the propagation velocity of the ultrasound signal in a blood vessel tissue, and conversion means for converting positional information of each position within a range in which the flushing liquid flows regarding the ultrasound line data generated by the generation means based on a ratio between the propagation velocity in the blood vessel tissue and the propagation velocity in the flushing liquid. A tomographic image of a blood vessel is constructed by using the ultrasound line data converted by the conversion means.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: December 1, 2020
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Ema Itoh, Isao Mori
  • Patent number: 10849574
    Abstract: An array emitter including a plurality of emitting portions can be used to individually emit selected energy, such as x-ray radiation, from the emitter ray rather than powering or emitting radiation from all portions of the emitter array. According, providing a plurality of cells within an emitter array, and selectively emitting x-rays from individual cells can allow for selection of which cells to emit x-rays from to acquire selected image data. A process is disclosed for selecting, including automatically, which portions to power to emit energy.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 1, 2020
    Assignee: Medtronic Navigation, Inc.
    Inventor: Patrick A. Helm
  • Patent number: 10835328
    Abstract: A medical robot system, including a robot coupled to an effectuator element with the robot configured for controlled movement and positioning. The system may include a transmitter configured to emit one or more signals, and the transmitter is coupled to an instrument coupled to the effectuator element. The system may further include a motor assembly coupled to the robot and a plurality of receivers configured to receive the one or more signals emitted by the transmitter. A control unit is coupled to the motor assembly and the plurality of receivers, and the control unit is configured to supply one or more instruction signals to the motor assembly. The instruction signals can be configured to cause the motor assembly to selectively move the effectuator element.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: November 17, 2020
    Assignee: Globus Medical, Inc.
    Inventors: Neil R. Crawford, Nicholas Theodore, Mitchell A. Foster
  • Patent number: 10835326
    Abstract: A medical robot system, including a robot coupled to an effectuator element with the robot configured for controlled movement and positioning. The system may include a transmitter configured to emit one or more signals, and the transmitter is coupled to an instrument coupled to the effectuator element. The system may further include a motor assembly coupled to the robot and a plurality of receivers configured to receive the one or more signals emitted by the transmitter. A control unit is coupled to the motor assembly and the plurality of receivers, and the control unit is configured to supply one or more instruction signals to the motor assembly. The instruction signals can be configured to cause the motor assembly to selectively move the effectuator element.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: November 17, 2020
    Assignee: Globus Medical Inc.
    Inventors: Neil R. Crawford, Nicholas Theodore, Mitchell A. Foster
  • Patent number: 10813597
    Abstract: Systems and methods are disclosed for determining physiological information in a subject. The system includes: a light source positionable along a first location outside of the subject; a photo-sensitive detector positionable along a second location outside of the subject and configured to detect scattered light and generate a signal; a processor having a program and a memory, wherein the processor is operably coupled to the detector and configured to receive and store the signals generated over a period of time; wherein the processor is programmed to derive contrast metrics from the stored signals, calculate a waveform from the contrast metrics, decompose the waveform into basis functions and respective amplitudes, and compare the basis function amplitudes to determine the physiological information.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: October 27, 2020
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, COVIDIEN LP
    Inventors: Tyler Bywaters Rice, Michael Ghijsen, Bruce J. Tromberg, Bruce Yee Yang, Sean Michael White
  • Patent number: 10813574
    Abstract: A data processing method for determining a range of motion of an artificial knee joint which connects a femur and a tibia via a medial ligament and a lateral ligament, wherein at least the femur comprises an implant which forms a medial condyle and a lateral condyle, the method comprising the steps of: acquiring the maximum lengths of the lateral ligament and the medial ligament for a particular flexion angle of the knee joint; calculating a first virtual position between the femur and the tibia in which the lateral condyle of the femoral implant touches the tibia and the medial ligament is stretched to its maximum length; calculating a maximum valgus angle of the range of motion from the first virtual position; calculating a second virtual position between the femur and the tibia in which the medial condyle of the femoral implant touches the tibia and the lateral ligament is stretched to its maximum length; and calculating a maximum varus angle of the range of motion from the second virtual position.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: October 27, 2020
    Assignees: Smith & Nephew, Inc., Smith & Nephew Asia Pacific Pte. Limited, Smith & Nephew Orthopaedics AG
    Inventors: Oliver Fleig, Christian Brack, Zohar Leder, Martin Bauer
  • Patent number: 10786156
    Abstract: A system includes a wearable head apparatus and an electronic console. The head apparatus is configured to receive resultant light from the head of a subject. The electronic console includes a fiber array, a detector, and a computing device. The fiber array includes a plurality of fibers configured to transport resultant light received by the head apparatus. The detector includes a plurality of super-pixels each defined by a plurality of pixels of an array of pixels. Each super-pixel is associated with a fiber. Each super-pixel is configured to generate a plurality of detection signals in response to detected resultant light from its associated fiber. The computing device receives the detection signals from each of the plurality of super-pixels. The computing device generates a high density-diffuse optical tomography (HD-DOT) image signal of the brain activity of the subject based on the detection signals from the super-pixels.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: September 29, 2020
    Assignee: Washington University
    Inventors: Joseph P. Culver, Karla Bergonzi, Adam Eggebrecht, Silvina Ferradal
  • Patent number: 10775308
    Abstract: Disclosed are apparatus and methods for determining accurate optical property values of turbid media. In one embodiment, the method includes (a) providing a light source, having a first wavelength and a known illumination power, sequentially at a plurality of specific illumination positions on a first surface of the specimen; (b) for each specific position of the light source, obtaining light emission measurements from a second surface of the specimen that is opposite the first surface, wherein the light emission measurements are obtained for a plurality of surface positions of the second surface; and (c) for each specific illumination position of the light source at the first surface of the specimen, determining one or more optical properties for the specimen based on the specific illumination position of the light source, the first wavelength of the light source, the known illumination power of the light source, and the obtained light emission measurements for such each specific illumination position.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: September 15, 2020
    Assignee: Xenogen Corporation
    Inventors: Daniel G. Stearns, Bradley W. Rice
  • Patent number: 10765384
    Abstract: A system and method that acquire (i) at least a reference image including one of a preoperative image of a surgical site with skeletal and articulating bones and a contralateral image on an opposite side of the patient from the surgical site, and (ii) at least an intraoperative image of the site after an implant has been affixed to the articulating bone. The system generates at least one reference landmark point on at least one anatomical feature on the articulating bone in the reference image and at least one intraoperative landmark point on that anatomical feature in the intraoperative image. The reference and intraoperative images are compared, and differences between the orientation of the articulating bone in the two images are utilized to analyze at least one of offset and length differential.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: September 8, 2020
    Assignee: DEPUY SYNTHES PRODUCTS, INC.
    Inventors: Noah D. Wollowick, Andrew J. Cooper