Patents Examined by Angela M Hoffa
  • Patent number: 10682121
    Abstract: An ultrasound probe having a rotatable transducer array for providing an improved field of view (FOV) and an improved scan angle includes a transducer comprising a transducer array and rotating at a predetermined angle. A supporting member supports the transducer and includes a rotation guide which is in contact with the transducer while the transducer rotates.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: June 16, 2020
    Assignee: Samsung Medison Co., Ltd.
    Inventor: In Seong Song
  • Patent number: 10675003
    Abstract: This disclosure provides systems and methods for intravascular imaging. Some systems may be configured to generate a screening image of a section of a patient's vessel, identify one or more sub-sections of the screening image that each include a diagnostically significant characteristic of the vessel, and imaging the one or more sub-sections. Some systems may be configured to automatically identify the one or more sub-sections and/or to allow a user to manually identify the one or more sub-sections. Some systems may be configured to automatically image the one or more sub-sections after the one or more sub-sections are identified. In some examples, the system may be configured to displace blood during imaging of the sub-sections to enhance image quality. The system may be configured to minimize the period of time blood is displaced by synchronizing imaging and blood displacement.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: June 9, 2020
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Jason F. Hiltner, Kendall R. Waters, Thomas C. Moore
  • Patent number: 10660512
    Abstract: A plenoptic otoscope enables three-dimensional and/or spectral imaging of the inside of the ear to assist in improved diagnosis of inflammations and infections. The plenoptic otoscope includes a primary imaging system and a plenoptic sensor. The primary imaging system includes an otoscope objective and relay optics, which cooperate to form an image of an inside of an ear at an intermediate image plane. The plenoptic sensor includes a microimaging array positioned at the intermediate image plane and a sensor array positioned at a conjugate of the pupil plane. An optional filter module may be positioned at the pupil plane or one of its conjugates to facilitate three-dimensional and/or spectral imaging.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: May 26, 2020
    Assignee: Ricoh Company, Ltd.
    Inventors: Kathrin Berkner, Sapna A. Shroff, Lingfei Meng, Nikhil Balram
  • Patent number: 10653497
    Abstract: Embodiments of the present disclosure provide a surgical robot system may include an end-effector element configured for controlled movement and positioning and tracking of surgical instruments and objects relative to an image of a patient's anatomical structure. In some embodiments the end-effector and instruments may be tracked by surgical robot system and displayed to a user. In some embodiments, tracking of a target anatomical structure and objects, both in a navigation space and an image space, may be provided by a dynamic reference base located at a position away from the target anatomical structure.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: May 19, 2020
    Assignee: Globus Medical, Inc.
    Inventors: Neil R. Crawford, Chris Major, Michael Bartelme, Nobert Johnson, Stephen Cicchini
  • Patent number: 10656009
    Abstract: A system is configured to discriminate amongst different environments based in part on characteristics of ambient light. Ambient light intensity is measured using a light-sensitive element configured to generate an output signal indicative of an intensity of light incident on the light-sensitive element. A controller is configured to obtain a set of ambient light measurements using the light-sensitive element, and determine that the measurements correspond to a particular ambient light profile. The particular ambient light profile can be one of multiple ambient light profiles that each correspond to a different environment and/or context.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: May 19, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Russell Norman Mirov, Mark Murphy
  • Patent number: 10657645
    Abstract: The subject matter disclosed herein relates to methods for diagnosing a neurological disorder in a subject. In certain aspects, the methods described herein involve determining one or more critical areas in the brain from molecular Magnetic Resonance Imaging (MRI) data where two groups differ and measuring MRI signal within determined critical areas in a new subject in order to assign risk or diagnosis.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: May 19, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Ramin Parsey, Arthur Mikhno
  • Patent number: 10650519
    Abstract: The subject matter disclosed herein relates to methods for diagnosing a neurological disorder in a subject. In certain aspects, the methods described herein involve determining one or more critical areas in the brain from PET data where two groups differ and measuring PET signal within determined critical areas in a new subject in order to assign risk or diagnosis.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: May 12, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Ramin Parsey, Arthur Mikhno
  • Patent number: 10641844
    Abstract: The present invention is directed to a system and method for performing tissue, preferably bone tissue manipulation. The system and method may include implanting markers on opposite sides of a bone, fractured bone or tissue to facilitate bone or tissue manipulation, preferably in-situ closed fracture reduction. The markers are preferably configured to be detected by one or more devices, such as, for example, a detection device so that the detection device can determine the relative relationship of the markers. The markers may also be capable of transmitting and receiving signals. An image may be captured of the bone or tissue and the attached markers. From the captured image, the orientation of each marker relative to the bone fragment may be determined. Next, the captured image may be manipulated in a virtual or simulated environment until a desired restored orientation has been achieved. The orientation of the markers in the desired restored orientation may then be determined.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 5, 2020
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Robert Frigg, Stuart Weikel, Stefan Schwer, Geoffrey Flexner, Ross Jonathan Hamel
  • Patent number: 10638944
    Abstract: A method of performing a surgical procedure includes generating an infrared image of tissue using a thermographic camera, analyzing the infrared images to determine blood flow characteristics of the tissue, and resecting a portion of the tissue determined to have abnormal blood flow characteristics.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: May 5, 2020
    Assignee: Covidien LP
    Inventor: Patrick Mozdzierz
  • Patent number: 10631831
    Abstract: Systems and methods are provided for adjusting a field of view of a medical imaging system, such as for an ultrasound imaging system. A system (e.g., an ultrasound imaging system) is provided herein that includes a matrix array probe. The matrix array probe includes a plurality of transducer elements arranged in an array with an elevation direction and an azimuth direction. The system includes a controller circuit that is configured to control the matrix array probe to acquire ultrasound data from a sector field of view (FOV) with a subset of the plurality of transducer elements. The sector FOV having a virtual apex. The controller circuit is further configured to shift the virtual apex and the corresponding sector FOV from a first sector FOV that has at least one ultrasound obstructed region to a second sector FOV that encompasses the ultrasound obstructed region.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 28, 2020
    Assignee: General Electric Company
    Inventor: Helmut Brandl
  • Patent number: 10631829
    Abstract: The present invention relates to an ultrasound imaging system (10) for inspecting an object (33) in a volume (32). The ultrasound imaging system comprises an ultrasound image acquisition probe (14) for acquiring three-dimensional ultrasound images and providing three-dimensional ultrasound image data, comprising a tracking device (25, 27) for tracking a position of the ultrasound image acquisition probe (14) and providing a viewpoint position (128, 130) of the three-dimensional ultrasound images. By this, an improved initialization and improved co-registration and co-segmentation is enabled by providing a plurality of three-dimensional ultrasound images and their respective viewpoint positions (128, 130), and to conduct a segmentation (80) of the object (33) simultaneously out of the plurality of three-dimensional ultrasound images and taking into account the viewpoint positions (128, 130).
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: April 28, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Cecile Dufour, Raphael Manua Michel Prevost, Benoit Jean-Dominique Bertrand Maurice Mory, Roberto Jose Ardon
  • Patent number: 10617392
    Abstract: There is provided a technique for obtaining a high-quality image by extracting only a nonlinear component with high accuracy in ultrasonic imaging using an amplitude modulation method of THI. By removing a fundamental wave component with high accuracy by making the influence of electrical distortion due to analog amplification on the echo signals of ultrasonic waves having different sound pressure levels approximately the same, only the nonlinear component is extracted with high accuracy. For example, the above influence is made to be the same by controlling the amplification factor of an amplification section. In addition, the above influence is made to be the same by restoring the digital data with a filter.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: April 14, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Chizue Ishihara, Hiroki Tanaka, Kunio Hashiba, Hiroshi Kuribara
  • Patent number: 10610317
    Abstract: Image-guided therapy of a tissue can utilize magnetic resonance imaging (MRI) or another medical imaging device to guide an instrument within the tissue. A workstation can actuate movement of the instrument, and can actuate energy emission and/or cooling of the instrument to effect treatment to the tissue. The workstation and/or an operator of the workstation can be located outside a vicinity of an MRI device or other medical imaging device, and drive means for positioning the instrument can be located within the vicinity of the MRI device or the other medical imaging device. The instrument can be an MRI compatible laser probe that provides thermal therapy to, e.g., a tissue in a brain of a patient.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: April 7, 2020
    Assignee: MONTERIS MEDICAL CORPORATION
    Inventors: Richard Tyc, Salman Qureshi, Mark Andrew Grant, Luis Filipe Silva Fernandes, Daniel Prazeres Carreira, John Schellhorn
  • Patent number: 10610163
    Abstract: Assessing Susceptibility to Epilepsy and Epileptic Seizures A method and system adapted to assist with assessing susceptibility to epilepsy and/or epileptic seizures in a patient receives (202) patient brain data and generates (204) a network model from the received patient brain data. The system further generates (206) synthetic brain activity data in at least some of the nodes of the network model and computes (208) seizure frequency from the synthetic brain activity data by monitoring transitions from non-seizure states to seizures states in at least some of the nodes over time. The system further includes a device (104, 110) configured to use the seizure frequency to compute (210) a likelihood of susceptibility to epilepsy and/or epileptic seizures in the patient, and a device (104, 110) configured to compare (212) the computed likelihood with another likelihood of susceptibility to epilepsy and/or epileptic seizures in order to assess whether the likelihood has increased or decreased.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 7, 2020
    Assignees: UNIVERSITY OF EXETER, KINGS COLLEGE LONDON
    Inventors: John Robert Terry, Mark Richardson, Oscar Benjamin
  • Patent number: 10602991
    Abstract: An apparatus to examine a target in a patient includes an x-ray source configured to deliver a first x-ray beam towards the target, a device having an array of openings, the device located at an angle less than 180 degrees relative to a beam path of the first x-ray beam to receive a second x-ray beam resulted from an interaction between the first x-ray beam and the target, and a detector aligned with the device, the detector located at an angle less than 180 degrees relative to the beam path of the first x-ray beam to receive a part of the second x-ray beam from the device that exits through the openings at the device.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: March 31, 2020
    Assignee: Varian Medical Systems, Inc.
    Inventors: Edward J. Seppi, Renate Parry
  • Patent number: 10595818
    Abstract: A medical system and method for density assessment utilizing ultrasound. The system includes a guidewire configured and dimensioned for insertion in the vessel of the patient, a sensor positioned at the distal portion of the elongated member and a connector connecting the elongated member to an indicator, the sensor determining the density and the indicator providing an indication of the determined density.
    Type: Grant
    Filed: February 19, 2017
    Date of Patent: March 24, 2020
    Assignee: Makaha Medical, LLC.
    Inventor: Marc-Alan Levine
  • Patent number: 10588606
    Abstract: A method of determining a status of ultrasound coupling medium for performing an ultrasound scan for providing an ultrasound image including plural scanlines (Nl) is disclosed. In an embodiment, the method includes operating an ultrasound device to capture an image frame including plural scanlines (Nl), each scanline having an associated sample set (s) of intensity values; processing a subset of the associated sample set (s) of values for each scanline to determine a first summation for each scanline; processing plural sets of corresponding intensity values from each of plural scanlines located within a range of a respective scanline to determine a set of difference values for each respective scanline; processing each set of difference values to determine a second summation for each scanline; and generating a status for the ultrasound coupling medium according to a relationship between each of the first summations and each of the associated second summations.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: March 17, 2020
    Assignee: ECHONOUS, INC.
    Inventor: Andrew John Niemiec
  • Patent number: 10588647
    Abstract: A computer assisted surgery system and a method for operating a computer assisted surgery system is described therein. The system and method includes providing a virtual representation of a medical device to provide an easier application of a medical device, such as an implant or the like. The described system and method allows for simple and fast positioning of a medical device to be applied, such as an implant, for example.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: March 17, 2020
    Assignee: Stryker European Holdings I, LLC
    Inventors: Arno Blau, Bernd Simon, Holger Müller-Daniels, Michael Kohnen
  • Patent number: 10578686
    Abstract: An MRI local coil system for use with an MRI scanner to image a breast, the system comprising a plastic housing and an RF coil system. The RF coil system comprises a conductor and electronics. The electronics comprises a capacitor and a blocking circuit. The conductor and the electronics are disposed within the plastic housing and the conductor is integrally formed with the plastic housing.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: March 3, 2020
    Assignee: Invivo Corporation
    Inventors: John Laviola, Thomas DeYoung, Raymond Ruthenberg
  • Patent number: 10575825
    Abstract: To reduce speckle is spectral Doppler imaging, any oversampling relative to the velocity scale is used to create different data sets for the location at a given time. The different data sets have at least partially independent noise. Spectra are estimated from the different data sets and the resulting spectra combined into a spectrum with less speckle. To improve signal-to-noise ratio, the samples acquired for a given velocity scale are band-limited into different narrower bands. The portion of the spectrum estimated for each narrow band has a higher signal-to-noise ratio than a spectrum estimated for the entire band. The parts of the spectrum estimated for the different narrow bands are stitched together to provide a spectrum for the entire band with greater signal-to-noise ratio. In another approach, the user may input a narrow band relative to the velocity scale so that the corresponding part of the spectrum is provided with greater signal-to-noise ratio.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: March 3, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul D. Freiburger, Mikyoung Park