Patents Examined by Angeline Premraj
  • Patent number: 9603534
    Abstract: The invention relates to a method for determining a cardiovascular performance reserve for each individual patient, comprising the steps of: a) receiving input physiological data from the patient for obtaining a parameter Z which is or approximates the product of the Stroke Volume (SV) by the Systemic Vascular Resistance (SVR); b) providing a value representing the Respiratory Rate (RR) of said patient, wherein the Respiratory Rate (RR) value is provided by measurements using dedicated device(s), calculations from the input physiological data or manually by using best estimate; c) providing anthropometric data of said patient for calculating the Body Surface Area (BSA) of said individual, wherein the anthropometric data includes at least body dimensions (such as height and weight) of said patient; d) calculating the Cardiovascular Reserve (CVR) by using said Z parameter and said RR according to following formula: CVR=(Z/RR); e) calculating a Cardiovascular Reserve Index (CVRI) by standardizing said CVR (by sa
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 28, 2017
    Assignee: CARDIO SCALE LTD.
    Inventors: Uri Gabbay, Ben Zion Bobrovsky
  • Patent number: 9597013
    Abstract: A method and system for detecting an ineffective effort of a patient being mechanically ventilated by a ventilator comprises (i) monitoring a respiratory flow of air of the patient after said ventilator has cycled; (ii) creating a signal indicative of said flow; (iii) removing artifact from said signal; (iv) monitoring said signal for perturbations; and (v) determining that an ineffective effort has occurred when said perturbation is significant.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 21, 2017
    Assignee: RESMED LIMITED
    Inventors: Qestra Camille Mulqueeny, Stefano Nava
  • Patent number: 9591976
    Abstract: Method for measuring a blood volume is provided. At least two types of respiratory variation data; for instance, data pertinent to respiratory variations in stroke volume (SVV) data, data pertinent to respiratory variations in an amplitude of a pulse wave (PAV), a pulse wave transit time (PWTT) in a respiratory cycle, and a heart rate (HR) in a predetermined time, are measured, and patient's inherent coefficients ?, ?, and K are calculated, whereby a cardiac output can be determined by an equation CO=K (?*PWTT+?)*HR.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: March 14, 2017
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Yoshihiro Sugo, Tomoyuki Sakai, Mami Terao
  • Patent number: 9579036
    Abstract: A sensor may include a substrate having a sensing portion defining a sensor thereon and a circuit mounting portion defining at least one electrically conductive pad that is electrically connected to the sensor. The sensor may be configured to produce a signal indicative of a condition of the patient. An anisotropic medium may be disposed on the circuit mounting portion and may be electrically conductive in a direction through the medium and electrically insulating in directions along the medium. An electrical circuit may be mechanically mounted to the circuit mounting portion of the first substrate via the anisotropic medium with at least one electrically conductive terminal juxtaposed over the at least one electrically conductive pad. The anisotropic medium may establish local electrical contact between the at least one electrically conductive terminal and the at least one electrically conductive pad.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: February 28, 2017
    Assignees: Roche Diabetes Care, Inc., Roche Diagnostics International AG
    Inventors: Joachim Kasielke, Ulrich Haueter, Ulrike Kamecke, Christian Hof, Matthew Reynolds, Timon Kasielke, Steven Gray, Harvey B Buck, Michael Lukin, Fritz Hindelang
  • Patent number: 9486172
    Abstract: In a method of determining insulin sensitivity in a patient, glucose level is sensed continuously. A first area under the curve representing the glucose level over time is calculated. An amount of insulin that has been administered to the patient is sensed. An estimation of insulin on board the patient is calculated based on the glucose level and the amount of insulin administered to the patient. A second area under the curve representing the insulin on board over time is calculated. Patient data indicative of at least one patient physical parameter is received. Information indicative of amount of glucose ingested by the patient during a meal is received. An insulin sensitivity output indicative of ability of insulin to stimulate glucose utilization and inhibit glucose production in the patient based on the first and second area under the curve, the patient data and the meal information is generated.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: November 8, 2016
    Assignee: Università degli Studi di Padova
    Inventors: Claudio Cobelli, Chiara Dalla Man, Michele Schiavon, Ananda Basu, Yogish C. Kudva
  • Patent number: 9456756
    Abstract: A guide wire has a distal end incorporating a coil and a capacitive element that form a resonance circuit with a resonance frequency that is responsive to the pressure of blood external to the guide wire. The resonance frequency can be detected wirelessly, or through two contacts at the proximal wire end, or through one brush contact located inside an insertion sheath and a ground electrode. Wireless detection can be implemented via a second resonance circuit, and electronics for determining the frequency when the first and second circuits are in resonance with each other.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 4, 2016
    Assignee: Guided Interventions, LLC
    Inventors: Reinhard J. Warnking, Matthew J. Pollman
  • Patent number: 9456755
    Abstract: A medical monitoring device for monitoring electrical signals from the body of a subject is described. The medical monitoring device monitors electrical signals originating from a cardiac cycle of the subject and associates each cardiac cycle with a time index. The medical monitoring device applies a forward computational procedure to generate a risk score indicative of hyperkalemia, hypokalemia or arrhythmia of the subject. The medical monitoring device can adjust the forward computational procedure based upon clinical data obtained from the subject.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 4, 2016
    Assignee: Medtronic, Inc.
    Inventors: Orhan Soykan, VenKatesh R. Manda, Martin T. Gerber, Christopher M. Hobot
  • Patent number: 9380948
    Abstract: A computer-assisted method for quantitative analysis of respiratory sinus arrhythmia (RSA) includes obtaining a time series of a cardiac interval signal from an individual, obtaining a time series of a respiratory signal from the individual; decomposing the cardiac interval signal into a first group of ensemble empirical modes; obtaining, by a computer system, a time series of RSA instantaneous amplitude from at least one of the first group of ensemble empirical modes; decomposing the respiratory signal into a second group of ensemble empirical modes; obtaining a time series of respiratory instantaneous phase from the one of the second group of ensemble empirical modes; determining respiratory period from the time series of the respiratory instantaneous phase; and quantifying RSA in the individual according to a dependence of the RSA instantaneous amplitude on the respiratory period.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: July 5, 2016
    Inventors: Men-Tzung Lo, Yung-Hung Wang
  • Patent number: 9241652
    Abstract: An auditory event-related potential measurement system includes: a video output section configured to present a video to a user; a measurement section configured to measure a user's electroencephalogram signal; a scheduling section configured to schedule a timing of presenting an auditory stimulation so that the auditory stimulation is presented during a period in which the video is being presented to the user; an auditory stimulation output section configured to present the auditory stimulation to the user at the scheduled timing; and a processing section configured to acquire, from the electroencephalogram signal, an event-related potential in a first time range as reckoned from a point in time at which the auditory stimulation is presented. When an amount of video luminance change exceeds a threshold value, the auditory stimulation is not presented during a second time range as reckoned from a point in time at which the threshold value is exceeded.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: January 26, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shinobu Adachi, Jun Ozawa