Patents Examined by Anita Nassiri Motlagh
  • Patent number: 11040307
    Abstract: A method for removing at least one contaminant from a fluid stream by filtering the fluid stream with a filtration medium. The filtration medium includes an impregnate. The impregnate includes a surfactant such as sulfamic acid. The medium has from about 0.1 to about 25% by weight of impregnate. The method is useful for removing one or more volatile organic compounds, particularly formaldehyde, from the fluid stream. In some embodiments, the method includes removing at least two volatile organic compound contaminants from the fluid stream.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: June 22, 2021
    Assignee: PURAFIL, INC.
    Inventor: William G. England
  • Patent number: 11033855
    Abstract: A process for the absorption of a target gaseous component from a gas stream comprising the steps of: contacting the gas stream with an absorber comprising an liquid absorbent for absorbing the target gaseous component to produce a rich liquid absorbent stream and a non target gaseous component, said non target gaseous component including water vapour; treating the rich liquid absorbent stream in a desorber to thereby release the target gaseous component and a water vapour component into a desorber gas stream and produce a lean liquid absorbent stream; and forming a recovered water stream from the output of a water separator for separating the water vapour from the target gaseous component, said water separator forming part of the absorber and/or the desorber.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: June 15, 2021
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Paul Hubert Maria Feron, Ramesh Thiruvenkatachari, Ashleigh Jane Cousins
  • Patent number: 11014037
    Abstract: A membrane method processing system and process for a high-concentration salt-containing organic waste liquid incineration exhaust gas is described. The system consists essentially of a waste liquid incinerator (I), a gas-solid separator (II), a heat exchanger (III), an air blower (IV), an anti-caking agent storage tank (V), a membrane method dust cleaner (VI), an induced draft fan (VII), a check valve (VIII), and a desulfurization tower (IX). The present invention introduces the dust collecting membrane into the tail gas treatment system and utilizes the small pore size and high porosity of the dust collecting membrane to prevent inorganic salt particles from entering the internal of the filter material and agglomerating there. When the humidity of the gas entering the dust collector increases during the dust removing process, the anti-caking agent is also introduced into the tail gas treatment system to change the surface structure of the inorganic salt crystal to prevent the crystal from agglomeration.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: May 25, 2021
    Assignee: JIANGSU JIULANG HIGH-TECH CO., LTD.
    Inventors: Zhaoxiang Zhong, Feng Zhang, Junwei Wu
  • Patent number: 11000797
    Abstract: A method of separating impurities from a natural gas stream. The natural gas stream is cooled through heat exchange with one or more process streams to produce a chilled gas stream, which is contacted with a lean solvent stream in a contactor to separate hydrogen sulfide (H2S) from the chilled gas stream, thereby producing a rich solvent stream and a partially-treated gas stream. Carbon dioxide (CO2) and H2S are separated from the partially-treated gas stream in a membrane separation system, thereby creating a fully-treated gas stream and a permeate gas stream, the permeate gas stream being comprised primarily of H2S and CO2, and the fully-treated gas stream being comprised primarily of natural gas. The fully-treated gas stream and the permeate gas stream are at a lower temperature than the partially-treated gas stream. The fully-treated gas stream and the permeate gas stream comprise the one or more process streams.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: May 11, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: David W. Maher, Shwetha Ramkumar, P. Scott Northrop, Robert D. Denton
  • Patent number: 11000830
    Abstract: A method of modifying a chemical interaction between a functional group of an immobilized amine in a solid sorbent composition and a compound that chemically interacts with the functional group to reduce the heat required to desorb the compound from the solid sorbent. A method of inhibiting degradation of an immobilized amine in an immobilized amine solid sorbent. Compositions and methods of use of a low-cost regenerable immobilized amine solid sorbent resistant to degradation.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 11, 2021
    Assignee: The University of Akron
    Inventor: Steven S. C. Chuang
  • Patent number: 10994261
    Abstract: The present disclosure provides novel solid sorbents synthesized by the reaction of polyamines with polyaldehyde phosphorous dendrimer (P-dendrimer) compounds. The sorbents are highly stable and exhibit rapid reaction kinetics with carbon dioxide, making the sorbents applicable for carbon capture, and can be easily regenerated for further use. The material is stable to aqueous and organic media, as well as strong acid and bases. The sorbent maintains full capacity over extended use. The material can be used for CO2 capture from pure CO2 streams, mixed gas streams, simulated flue gas, and ambient air. Additionally, the material can be adhered to surfaces for reversible CO2 capture applications outside of bulk particle-based processes.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: May 4, 2021
    Assignee: RESEARCH TRIANGLE INSTITUTE
    Inventors: Samuel John Thompson, III, Mustapha Soukri
  • Patent number: 10981105
    Abstract: A carbon dioxide capturing system according to an embodiment is provided with a reboiler which heats an absorption liquid in a regeneration tower with a heated steam, and condenses the heated steam to generate a downstream side condensed water. The heated steam is supplied to the reboiler by an upstream side line. The downstream side condensed water is discharged from the reboiler by a downstream side line. A branched line branches from the upstream side line. The heated steam supplied to the branched line is cooled and condensed by an upstream side cooler, and an upstream side condensed water is generated. A physical quantity of an absorption liquid component in the upstream side condensed water and a physical quantity of an absorption liquid component in the downstream side condensed water are measured by a physical quantity measurement device.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: April 20, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Ryosuke Shibata, Hideo Kitamura, Kiyohiko Iwasa, Masatoshi Hodotsuka, Mitsuru Udatsu
  • Patent number: 10981114
    Abstract: A system has an alkaline capture stream as an input, an alkaline depleted stream as an output, a carbon dioxide removal unit operation having a return stream as an output, and a series of electrolyzers, each electrolyzer to receive a CO2-rich input stream and produce an acidified output stream that is more acidic than the CO2-rich input stream, and to receive a return stream and produce a basified output stream that is more alkaline than the input return stream. A method of removing carbon dioxide from an atmosphere and generating hydrogen includes capturing carbon dioxide from an atmosphere in an alkaline capture solution, sending the alkaline solution as a CO2-rich input solution to a series of electrolyzers in a CO2-rich path, removing carbon dioxide from the acidified CO2-rich solution at a removal unit to produce a CO2-poor solution, sending the CO2-poor solution to the series of electrolyzers in a return path, and returning the return solution to the alkaline capture stream.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 20, 2021
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Francisco E. Torres, Eugene Shin Ming Beh, Jessica Louis Baker Rivest
  • Patent number: 10968500
    Abstract: When coal is combusted, such as in the process of generating electricity, fly ash is produced in abundant quantities. Methods and systems are provided for extracting materials, such as rare earth elements critical for national security or nuclear power generation, from fly ash. A method of processing fly ash includes installing a collection system in a fly ash pond. The method further includes applying water to the top surface of the fly ash pond, such that the water leaches through fly ash and into the collection system. The leached water is processed to remove materials, such as rare earth elements. Systems are also provided.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: April 6, 2021
    Inventor: Gregory Rudolph Verderber
  • Patent number: 10967325
    Abstract: The invention relates to an absorbent solution and to a method using this solution for removing acid compounds contained in a gaseous effluent, comprising water and at least one diamine with general formula (I) as follows: wherein: radicals R1, R2, R3 are each selected indiscriminately among a methyl radical and a hydroxyethyl radical, and at least one radical among R1, R2, R3 is a methyl radical.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: April 6, 2021
    Assignee: IFP Energies nouvelles
    Inventors: Bruno Delfort, Julien Grandjean, Thierry Huard, Laetitia Giraudon, Catherine Lefebvre, Aurelie Wender, Armelle Nigon
  • Patent number: 10960353
    Abstract: An all-condition auxiliary denitration system and an operation method thereof are provided. The system includes a heat-storage medium heater, a low-temperature reheater, an economizer, and an SCR denitration device which are successively interconnected, and further including a heat-storage medium tank and a heat-storage medium and feedwater heat exchanger. A flow of a cold heat-storage medium entering the heat-storage medium heater is regulated, so that heat absorption of the heat-storage medium is matched with a boiler load. Flows of hot heat-storage medium and feedwater, which enter the heat-storage medium and feedwater heat exchanger, are regulated through a feedwater regulating valve and a hot heat-storage medium outlet regulating valve. A total feedwater flow is regulated with assistance of a bypass feedwater regulating valve, so that a temperature of flue gas entering the SCR denitration device is kept in an optimal operation range under different boiler loads, and denitration efficiency is ensured.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: March 30, 2021
    Assignee: XI'AN JIATONG UNIVERSITY
    Inventors: Hui Yan, Daotong Chong, Ming Liu, Jinshi Wang, Weixiong Chen, Junjie Yan
  • Patent number: 10953384
    Abstract: The invention relates to regenerative, solid sorbents for adsorbing carbon dioxide from a gas mixture, including air, with the sorbent including a modified polyamine and a solid support. The modified polyamine is the reaction product of an amine and an epoxide. The sorbent provides structural integrity, as well as high selectivity and increased capacity for efficiently capturing carbon dioxide from gas mixtures, including the air. The sorbent is regenerative, and can be used through multiple cycles of adsorption-desorption.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: March 23, 2021
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Alain Goeppert, Hang Zhang, George A. Olah, G. K. Surya Prakash
  • Patent number: 10953361
    Abstract: A CO2 recovery device includes an advanced desulfurization-cooling column that removes sulfur oxides in an exhaust gas and reduces a temperature of the exhaust gas; a CO2 absorption column that removes CO2 in the exhaust gas by bringing the CO2 into contact with a CO2 absorption liquid; and a regeneration column that recovers the CO2 by causing the CO2 absorption liquid to release the CO2 while regenerating the CO2 absorption liquid, and feeds the regenerated CO2 absorption liquid to the CO2 absorption column, where the advanced desulfurization-cooling column includes a circulating line that supplies and circulates a desulfurization-cooling circulation liquid used in order to conduct desulfurization and cooling from a lower part to an upper part of the advanced desulfurization-cooling column, a deep SOx recovery packed bed, and a first cooler that cools the circulation liquid.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 23, 2021
    Assignee: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Takashi Kamijo, Tatsuya Tsujiuchi
  • Patent number: 10914272
    Abstract: In accordance with the present invention, there are provided simplified systems and methods for catalytically deactivating, removing, or reducing the levels of reactive component(s) from the vapor phase of fuel storage tanks. The simple apparatus described herein can be utilized to replace complex OBIGGS systems on the market. Simply stated, in one embodiment of the invention, the vapor phase from the fuel tank is passed over a catalytic bed operated at appropriate temperatures to allow the reaction between free oxygen and the fuel vapor by oxidation of the fuel vapor, thus deactivating reactive component(s) in the gas phase.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: February 9, 2021
    Assignee: Phyre Technologies, Inc.
    Inventors: Stephen Walker, Santosh Limaye, Wesley Jung, Stuart Robertson
  • Patent number: 10913029
    Abstract: A method, scrubbing solution and apparatus for removing a H2S scavenger, for example dithiazine, from a gas stream uses an acidic solution to convert the H2S scavenger to a salt. The acidic solution may be a phosphoric acid solution.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 9, 2021
    Assignee: Canadian Energy Services L.P.
    Inventor: David Horton
  • Patent number: 10895003
    Abstract: The present invention provides a method for the fabrication of a steel sheet with a completely martensitic structure which has an average lath size of less than 1 micrometer and an average elongation factor of the laths is between 2 and 5. The elongation factor of a lath is defined as a maximum dimension lmax divided by and a minimum dimension lmin. The steel sheet has a yield stress greater than 1300 MPa and a mechanical strength greater than (3220(C)+958) megapascals. A composition of a semi-finished steel product includes, expressed in percent by weight, is, 0.15%?C?0.40%, 1.5%?Mn?3%, 0.005%?Si?2%, 0.005%?Al?0.1%, 1.8%?Cr?4%, 0%?Mo?2%, whereby: 2.7% 0.5 (Mn)+(Cr)+3(Mo)?5.7%, S?0.05%, P?0.1%, optionally: 0%?Nb?0.050%, 0.01%?Ti?0.1%, 0.0005%?B?0.005%, 0.0005%?Ca?0.005%. The semi-finished product is reheated to a temperature T1 in the range between 1050° C. and 1250° C., then subjected to a roughing rolling at a temperature T2 in the range between 1000 and 880° C.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: January 19, 2021
    Assignee: ArcelorMittal
    Inventors: Kangying Zhu, Olivier Bouaziz
  • Patent number: 10888816
    Abstract: The invention relates to a process for removing hydrogen sulfide and carbon dioxide from a feed gas stream. H2S in the feed gas stream is converted to elemental sulfur in a Claus unit. At least a part of the gas stream obtained is contacted with an aqueous lean absorbing medium in an absorption zone at a pressure between 0.9 and 2 bara. The aqueous lean absorbing medium used comprises one or more amines chosen from: —a polyamine in the absence of tertiary amine functionalities having a pKa sufficient to neutralize carbamic acid, the polyamine having at least one primary amine functionality having a pKa smaller than 10.0 at 25° C., —a polyamine in the absence of tertiary amine functionalities having a pKa sufficient to neutralize carbamic acid, the polyamine having at least one secondary amine functionality having a pKa for each sorbing nitrogen smaller than 10.0 at 25° C. The process is improved as compared to a process involving Claus off-gas treatment with (activated) MDEA.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: January 12, 2021
    Assignee: Shell Oil Company
    Inventors: Farhang Abdollahi, Paul-Emannuel Joseph Joseph Just, John Nicholas Sarlis
  • Patent number: 10888814
    Abstract: The present invention relates to the separation of gases, and more specifically to an inventive process for the removal of carbon dioxide gas using carefully selected ionic liquid absorbents together with water in a carefully selected ratio.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 12, 2021
    Assignee: The Queen's University of Belfast
    Inventors: Martin Atkins, Yong Cheun Kuah, Julien Estager, Shieling Ng, Alex Oliferenko, Natalia Plechkova, Alberto Puga, Kenneth Seddon, David Wassell
  • Patent number: 10866166
    Abstract: The present invention provides an improved sorbent and corresponding device(s) and uses thereof for the capture and stabilization of volatile organic compounds (VOC) or semi-volatile organic compounds (SVOC) from a gaseous atmosphere. The sorbent is capable of rapid and high uptake of one or more compounds and provides quantitative release (recovery) of the compound(s) when exposed to elevated temperature and/or organic solvent. Uses of particular improved grades of mesoporous silica are disclosed.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: December 15, 2020
    Assignee: XPLOSAFE, LLC
    Inventors: Shoaib F. Shaikh, Allen W. Apblett, Nicholas F. Materer
  • Patent number: 10850230
    Abstract: Processes and systems for producing potassium sulfate as a byproduct of a desulfurization process. Sulfur dioxide is absorbed from a flue gas using an ammonia-containing solution to produce an ammonium sulfate solution that contains dissolved ammonium sulfate. At least a first portion of the ammonium sulfate solution is heated before dissolving potassium chloride therein to form a slurry that contains potassium sulfate crystals and an ammonium chloride solution. The slurry is then cooled to precipitate additional potassium sulfate crystals, after which the potassium sulfate crystals are removed to yield a residual ammonium chloride solution that contains dissolved ammonium chloride and residual dissolved potassium sulfate. Ammonia is then absorbed into the residual ammonium chloride solution to further precipitate potassium sulfate crystals, which are removed to yield a residual ammonium chloride solution that is substantially free of dissolved potassium sulfate.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: December 1, 2020
    Assignee: Marsulex Environmental Technologies Corporation
    Inventor: Eli Gal