Patents Examined by Ankit D Tejani
  • Patent number: 11576607
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: February 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Patent number: 11577076
    Abstract: A data transfer apparatus (“DTA”) connects to the field generator in a TTFields therapy system using the same connector on the field generator that is used to connect a transducer interface to the field generator. The field generator automatically determines whether the transducer interface or the DTA is connected to it. When the transducer interface is connected to the field generator, the field generator operates to deliver TTFields therapy to a patient. On the other hand, when the DTA is connected to the field generator, the field generator transfers patient-treatment data to the DTA, and the DTA accepts the data from the field generator. After the field generator and the DTA have been disconnected, the DTA transmits the data to a remote server, e.g., via the Internet or via cellular data transmission.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: February 14, 2023
    Assignee: Novocure GmbH
    Inventors: Yoram Wasserman, Golan Bar-Tal, Michael Varshaver, Shimon Elkabetz
  • Patent number: 11571145
    Abstract: A heart rate detection method and an apparatus, where the method is applied to an electronic device, and the electronic device includes a heart rate sensor. The method includes detecting, by the electronic device, a current motion status of a user carrying the electronic device, determining, based on a prestored correspondence between a motion status, a startup period, and a sampling rate, a startup period and a sampling rate corresponding to the current motion status, where the startup period is a period in which the heart rate sensor is started to detect a heart rate of the user carrying the electronic device, and the sampling rate is a sampling rate of collecting heart rate data by the heart rate sensor, and starting the heart rate sensor at regular intervals based on the startup period to collect heart rate data at the sampling rate.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: February 7, 2023
    Assignee: HUAWEI TECHNOLGOIES CO., LTD.
    Inventors: Huaiyong Wang, Tao Yi, Xiangyang Wang, Guangze Zhu, Kui Zhang
  • Patent number: 11564606
    Abstract: The signal quality of an electrophysiological signal can be determined from information regarding proximal stability of an electrophysiology catheter at the time the signal is acquired and temporal stability of the electrophysiological signal. The proximal stability information can include a distance between the electrophysiology catheter and an anatomical surface, a velocity of the electrophysiology catheter, and/or contact force between the electrophysiology catheter and the anatomical surface. Graphical representations of signal quality scores can be output to a display in order to enable visualization thereof by a practitioner.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: January 31, 2023
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jan O. Mangual-Soto, Louis-Philippe Richer, Chunlan Jiang, Cyrille Casset, Craig Markovitz
  • Patent number: 11559687
    Abstract: A method of detecting catheter movement includes positioning a first sensor in a first body cavity, monitoring a first parameter profile of the first body cavity, positioning a second sensor in a second body cavity, monitoring a second parameter profile of the second body cavity, the second parameter profile different than the first parameter profile at a first time, and, when the second parameter profile is the same as the first parameter profile at a second time after the first time, taking a catheter movement action.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 24, 2023
    Assignee: Cardionomic, Inc.
    Inventors: Steven D. Goedeke, Gabriela Cristina Molnar, David J. Serdar
  • Patent number: 11559238
    Abstract: An ambulatory medical device including a plurality of sensing electrodes and one or more processors operably coupled to the plurality of sensing electrodes is provided. Each sensing electrodes is configured to be coupled eternally to a patient and to detect one or more ECG signals. The one or more processors are configured to receive at least one electrode-specific digital signal for each of the plurality of sensing electrodes, determine a noise component for each of the electrode-specific digital signals, analyze each of the noise components for each of the plurality of sensing electrodes, generate electrode matching information for each sensing electrode of the plurality of sensing electrodes based upon analysis of each of the noise components, determine one or more sensing electrode pairs based upon the electrode matching information, and monitor each of the one or more sensing electrode pairs for ECG activity of the patient.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: January 24, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Christopher S. Lucci, Nathan J. Berry Ann, Shane S. Volpe
  • Patent number: 11559678
    Abstract: An adhesive electrode for the registration of electric and electrobiological signals and/or for stimulating a patient includes a patient contact portion and a transmission portion. The patient contact portion includes a layer of adhesive electrolyte material in contact with the patient's skin, a layer of conductive material, and a layer of insulating material. The transmission portion is also connected to the conductive layer. The layer of conductive material includes at least partially a layer of magnetic material, the transmission portion being removably secured to the layer of magnetic material.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: January 24, 2023
    Inventor: Matteo Mistretta
  • Patent number: 11559695
    Abstract: Implantable medical devices have modular lead bores that are constructed from individual lead bore modules. A given modular lead bore utilizes the number of individual lead bore modules necessary for the particular implantable medical device. Each lead bore module has a lead bore passageway and a feedthrough passageway. An electrical contact is present within the lead bore passageway of each lead bore module and the electrical contact is aligned to the lead bore passageway of a lead bore module. Hermetic feedthrough assemblies are also present within the lead bore passageway of each lead bore module. A feedthrough pin passes through a hermetic feedthrough assembly within a feedthrough passageway of each lead bore module. Each feedthrough pin is electrically coupled to a corresponding electrical contact and the medical device circuitry.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: January 24, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Darren A. Janzig, Andrew Thom, Brad Tischendorf, Randy S. Roles, Steven T. Deininger, Nicholas R. Whitehead
  • Patent number: 11559621
    Abstract: Embodiments of the present disclosure provide a method and apparatus for filtering and surgical procedures. An exemplary apparatus includes an evacuation tube having a filter, a long axis and a hollow conduit extending through the long axis, the hollow conduit fluidly connecting a tube inlet and a tube outlet, the filter located within the hollow conduit operable to remove particles from a flow passing through the hollow conduit from the tube inlet to the tube outlet.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: January 24, 2023
    Assignee: Buffalo Filter LLC
    Inventors: Michael Paul Wierzba, Kyrylo Shvetsov, Samantha Bonano, Gregory Pepe
  • Patent number: 11554048
    Abstract: Systems and methods of treating meibomian and sebaceous gland dysfunction. The methods include reducing oxygen concentration in the environment of one or more dysfunctional meibomian and sebaceous glands, thereby restoring a hypoxic status of one or more dysfunctional meibomian and sebaceous glands. The reducing of the oxygen concentration is accomplished by restricting blood flow to the one or more dysfunctional meibomian and sebaceous glands and the environment of one or more dysfunctional meibomian sebaceous glands. The restricting of the blood flow is accomplished by contracting or closing one or more blood vessels around the one or more dysfunctional meibomian or sebaceous glands. The methods also include giving local or systemic drugs that lead to the generation of hypoxia-inducible factors in one or more dysfunctional meibomian and sebaceous glands.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 17, 2023
    Assignee: The Schepens Eye Research Institute, Inc.
    Inventors: David A. Sullivan, Yang Liu
  • Patent number: 11554265
    Abstract: A method of applying a neural stimulus with an implanted electrode array involves applying a sequence of stimuli configured to yield a therapeutic effect while suppressing psychophysical side effects. The stimuli sequence is configured such that a first stimulus recruits a portion of the fibre population, and a second stimulus is delivered within the refractory period following the first stimulus and the second stimulus being configured to recruit a further portion of the fibre population. Using an electrode array and suitable relative timing of the stimuli, ascending or descending volleys of evoked responses can be selectively synchronised or desynchronised to give directional control over responses evoked.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 17, 2023
    Assignee: Saluda Medical Pty Ltd
    Inventors: John Louis Parker, James Hamilton Wah, Dean Michael Karantonis, Milan Obradovic, Robert Bruce Gorman
  • Patent number: 11558701
    Abstract: A hearing device for electrically coupling to skin of a user includes a body having a housing forming at least part of an outer surface. The device includes an acoustic transducer and an electrode disposed at least partially in the body. The electrode includes an outer conductor disposed at least partially in the housing and an inner conductor electrically coupled to the outer conductor and disposed subflush to the outer surface. A method of forming the hearing device includes providing a cast shell, forming an elastomeric conductor in a cavity of the cast shell, and removing a thin outer wall of the cast shell to form the housing of the hearing device.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 17, 2023
    Assignee: Starkey Laboratories, Inc.
    Inventors: Janet Marie Glenn, Mark T. Farley
  • Patent number: 11547339
    Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 10, 2023
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Patent number: 11547310
    Abstract: A device may obtain raw heartbeat data associated with a plurality of wavelength channels. The device may generate, based on a feature vector transformation, a plurality of feature vectors, each corresponding to a respective one of the plurality of wavelength channels. The device may identify a set of selected feature vectors, from the plurality of feature vectors, based on a plurality of squares of correlation coefficients, each associated with a respective pair of the plurality of feature vectors. The device may generate, based on a principal component analysis, an average feature vector of the set of selected feature vectors. The device may determine initial heartbeat cycle data based on the average feature vector. The device may correct heartbeat cycle gaps in the initial heartbeat cycle data in order to determine final heartbeat cycle data.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 10, 2023
    Assignee: VIAVI Solutions Inc.
    Inventors: Changmeng Hsiung, Lan Sun
  • Patent number: 11547859
    Abstract: An implantable medical device system receives a cardiac electrical signal produced by a patient's heart and comprising atrial P-waves and delivers a His bundle pacing pulse to the patient's heart via a His pacing electrode vector. The system determines a timing of a sensed atrial P-wave relative to the His bundle pacing pulse and determines a type of capture of the His bundle pacing pulse in response to the determined timing of the atrial P-wave.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Elizabeth A. Mattson, Eric R. Williams, Zhongping Yang, Shawn M. Campbell
  • Patent number: 11540778
    Abstract: A method for suppressing sensor noise in a spatially oversampled sensor array includes receiving spatially oversampled multi-channel sensor data from a region of interest and building a spatial model from the data for essential spatial degrees of freedom. The method further includes decomposing the data into the underlying spatial model to obtain associated amplitude components containing a mixture of original temporal waveforms of the data and, for each channel of the multi-channel sensor, estimating time-domain amplitude components using cross-validation. Next, for each channel, based on the estimated time-domain amplitude components, sensor noise and/or artifacts for that channel are identified. Finally, for each channel, the identified sensor noise and/or artifacts can be suppressed from the data.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventors: Samu Taulu, Eric D. Larson
  • Patent number: 11541234
    Abstract: A patient monitoring system within an Electroconvulsive Therapy (ECT) device includes a patient monitoring channel including a first electrode and a second electrode, with each electrode coupled to a respective lead. The monitoring system also includes an Alternating Current source structured to inject a test current to the first electrode lead or the second electrode lead and a differential amplifier structured to measure differences between signals received from the first electrode lead and the second electrode lead. Related methods include evaluating a quality of an electrode contact with a skin surface by injecting a lead of the electrode and one input of a differential amplifier with a known electrical current, comparing a difference between an electrical signal received from the lead of the injected electrode as well as from a lead of a passive signal electrode, and evaluating the compared difference.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 3, 2023
    Inventors: Richard A. Sunderland, John B. Shaw
  • Patent number: 11541238
    Abstract: An antenna assembly includes a metal layer configured to emit linearly polarized electromagnetic energy to a receiving antenna implanted underneath a subject's skin; and a feed port configured to connect the antenna assembly to a signal generator such that the antenna assembly receives an input signal from the signal generator and then transmits the input signal to the receiving dipole antenna, wherein the antenna assembly is less than 200 um in thickness, and wherein the metal layer is operable as a dipole antenna with a reflection ratio of at least 6 dB, the reflection ratio corresponding to a ratio of a transmission power of the antenna assembly in transmitting the input signal and a reflection power seen by the antenna assembly resulting from electromagnetic emission of the input signal.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: January 3, 2023
    Assignee: Stimwave Technologies Incorporated
    Inventors: Chad David Andresen, Richard LeBaron, Laura Tyler Perryman
  • Patent number: 11534097
    Abstract: The present application provides a method and apparatus for detecting an ECG signal and an electronic device. According to an example of the method, an ECG signal with a set time length is segmented to obtain a first set number of single heartbeats; feature data corresponding to each of the first set number of single heartbeats is determined to obtain a first set number of feature data; and a pathological category of the ECG signal with the set time length is determined based on the ECG signal with the set time length and the first set number of feature data.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 27, 2022
    Assignee: Anhui Huami Information Technology Co., Ltd.
    Inventors: Kongqiao Wang, Wei Zhao, Yazhao Li, Xiao Li
  • Patent number: 11529201
    Abstract: Disclosed herein are various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Also disclosed are various medical devices for in vivo medical procedures. Included herein, for example, is a surgical robotic device having an elongate device body, a right robotic arm coupled to a right shoulder assembly, and a left robotic arm coupled to a left shoulder assembly.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 20, 2022
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Jack Mondry, Shane Farritor, Eric Markvicka, Thomas Frederick, Joe Bartels