Patents Examined by Ankit D Tejani
  • Patent number: 11529517
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: December 20, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Steven M. Goetz
  • Patent number: 11529260
    Abstract: The invention provides an excimer laser system including a means for calibrating laser output to compensate for increased variation in laser optical fibers.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: December 20, 2022
    Assignee: Elios Vision, Inc.
    Inventors: Johannes Junger, Markus Enders
  • Patent number: 11529087
    Abstract: A method includes a first acquisition step of acquiring exercise intensity of exercise done by a target person, a second acquisition step of acquiring an electrocardiographic waveform of the target person who does the exercise, a third acquisition step of acquiring a predetermined feature amount from the acquired electrocardiographic waveform, and an estimation step of estimating an AT of the target person based on a relationship between the predetermined feature amount and the acquired exercise intensity. The estimation step includes a step of estimating the AT of the target person based on exercise intensity corresponding to an inflection point in a change of the predetermined feature amount with respect to the acquired exercise intensity.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: December 20, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuichi Higuchi, Hiroyoshi Togo, Nobuaki Matsuura
  • Patent number: 11511104
    Abstract: The invention generally relates to improved medical blood pump devices, systems, and methods. For example, blood pumps may be provided that include a housing defining a blood flow path between an inlet and an outlet. A rotor may be positioned in the blood flow path. A motor stator may be driven to rotate the rotor to provide the blood flow through the pump. Axial and/or tilt stabilization components may be provided to increase an axial and/or tilt stabilization of the rotor within the blood flow path. In some embodiments, biasing forces are provided that urge the rotor toward a bearing component. The biasing force may be provided by adjusting drive signals of the motor stator. Additionally, or alternatively, one or more magnets (e.g., permanent/stator magnets) may be provided to bias the rotor in the upstream and/or downstream direction (e.g., toward a bearing (chamfer, step, conical), or the like).
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: November 29, 2022
    Assignee: TC1 LLC
    Inventors: Onur Dur, Kevin Bourque
  • Patent number: 11510808
    Abstract: An in-ear stimulation device for administering caloric stimulation to the ear canal of a subject includes (a) first and second earpieces configured to be insertable into the ear canals of the subject; (b) at least first and second thermoelectric devices thermally coupled to respective ones of the first and second earpieces; (c) a first heat sink thermally coupled to the first thermoelectric device opposite the first earpiece and a second heat sink thermally coupled to the second thermoelectric device opposite the second earpiece; and (d) a controller comprising a waveform generator in communication with the first and second thermoelectric devices, the waveform generator configured to generate a first control signal to control a first caloric output to the first thermoelectric device and a second control signal to control a second caloric output to the second caloric device.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: November 29, 2022
    Assignee: Scion NeuroStim, Inc.
    Inventors: Lanty L. Smith, Leseo L. Rogers, Robert D. Black
  • Patent number: 11511107
    Abstract: Skin treatment device by application of plasma to a skin, the device includes: a body having a handle; and an electrode unit generating an atmospheric pressure plasma by application of electric power, wherein first and second grounds are provided on two opposite sides of the handle, respectively, wherein the electrode unit is detachably attached to a mounting portion recessed from one surface of the body, wherein the electrode unit comprises: a first film, a second film, and a third film laminated together; and a first conductor disposed between the first and second films, and a second conductor disposed between the second and third films, such that a dielectric barrier discharge is generated between the first and the second conductors.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 29, 2022
    Inventor: Min Ki Kim
  • Patent number: 11497432
    Abstract: Some embodiments include processing data via an executable file on a monitor to reduce the dimensionality of the data being transmitted over the wireless network. The output of the executable file also encrypts the data before being transmitted wireless to a remote server. The remote server receives the transmitted data and makes likelihood inferences based on the recorded data.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: November 15, 2022
    Assignee: iRhythm Technologies, Inc.
    Inventors: Steven Szabados, Yuriko Tamura, Xixi Wang, George Mathew
  • Patent number: 11491334
    Abstract: A method of applying a neural stimulus with an implanted electrode array involves applying a sequence of stimuli configured to yield a therapeutic effect while suppressing psychophysical side effects. The stimuli sequence is configured such that a first stimulus recruits a portion of the fibre population, and a second stimulus is delivered within the refractory period following the first stimulus and the second stimulus being configured to recruit a further portion of the fibre population. Using an electrode array and suitable relative timing of the stimuli, ascending or descending volleys of evoked responses can be selectively synchronised or desynchronised to give directional control over responses evoked.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: November 8, 2022
    Assignee: Saluda Medical Pty Ltd
    Inventors: John Louis Parker, James Hamilton Wah, Dean Michael Karantonis, Milan Obradovic, Robert Bruce Gorman
  • Patent number: 11490961
    Abstract: A method for re-configuring a biomedical laser device. The biomedical laser device is pre-configured to be operable in one or more operational modes, and is provided with set of operational parameters that are employed for at least one of: given medical procedure, given medical treatment, activation of given drug, illumination of given dye. The method includes collecting information indicative of light output properties of biomedical laser device measured during given operational mode; detecting deviation in measured light output properties with respect to predefined light output properties for given operational mode; determining new set of operational parameters that are to be employed for at least one of: new medical procedure, new medical treatment, activation of new drug, illumination of new dye; and sending new set of operational parameters to biomedical laser device for re-configuring biomedical laser device to be operable in a new operational mode.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 8, 2022
    Assignee: Modulight Corporation
    Inventors: Ville Vilokkinen, Petteri Uusimaa, Seppo Orsila
  • Patent number: 11490945
    Abstract: An apparatus for cooling tissues which are treated with an energy-based device, such as a laser, is disclosed. The apparatus comprises a spray nozzle which generates an atomized liquid spray for the treatment area, wherein the atomized liquid spray is based on a mixture of liquid and gas. Further, the spray nozzle comprises at least one liquid outlet which ejects a liquid, and at least one gas outlet which ejects a gas stream. Besides, the apparatus for cooling comprises at least one delivery means for delivering pressurized gas to the spray nozzle; and a pumping means for the liquid, wherein the pumping means is configured to operate in pulses.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: November 8, 2022
    Assignee: Fotona d.o.o.
    Inventors: Marko Kazic, Nejc Lukac, Blaz Tasic Muc, Matjaz Lukac
  • Patent number: 11478654
    Abstract: The present invention relates to the field of medical devices, and specifically to a packaging structure and a packaging method for a retinal prosthesis implanted chip, including a high-density stimulation electrode component processed by a glass substrate, wherein the stimulation electrode component comprises the glass substrate, and a plurality of stimulation electrodes and a pad structure provided on the glass substrate; the stimulation electrodes are formed through cutting out metal pins on the metal and then pouring with glass; the stimulation electrode component is connected to an ASIC chip; a glass packaging cover is covered on the ASIC chip, the glass packaging cover is provided with a metal feedthrough structure for communicating with the stimulation chip; and the packaging cover covers and encapsulates the pad structure.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 25, 2022
    Assignee: HANGZHOU NANOCHAP ELECTRONICS CO., LTD.
    Inventors: Jiawei Yang, Nhan Tran, Xuyan Yang
  • Patent number: 11478165
    Abstract: The invention relates to a cardiac device comprising an accelerometer (4) and a filter (6) arranged to eliminate noise from an SCG signal from the accelerometer (4), as well as a computer (8) arranged to apply a thoraco-cardiovascular model to the signal from the filter (6) and to obtain at least one cardiac activity indicator (CI) from same.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: October 25, 2022
    Inventors: Dominique Chapelle, Sébastien Imperiale, Alexandre Laurin, Philippe Moireau
  • Patent number: 11480561
    Abstract: Systems, devices, and methods for monitoring and assessing immunotherapy toxicity are discussed. An exemplary system receives physiologic information from a patient using an ambulatory medical device. In response to an immunotherapy such as CAR T-cell therapy, the system determines a toxicity indication using the received physiologic information. A therapy can be initiated or adjusted using the toxicity indication.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: October 25, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gezheng Wen, Qi An, Pramodsingh Hirasingh Thakur, Deepa Mahajan
  • Patent number: 11471676
    Abstract: Tumor treating fields (TTFields) can be delivered by implanting a plurality of sets of implantable electrode elements within a person's body. Temperature sensors positioned to measure the temperature at the electrode elements are also implanted, along with a circuit that collects temperature measurements from the temperature sensors. In some embodiments, an AC voltage generator configured to apply an AC voltage across the plurality of sets of electrode elements is also implanted within the person's body.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: October 18, 2022
    Assignee: Novocure GmbH
    Inventors: Yoram Wasserman, Zeev Bomzon, Hadas Sara Hershkovich, Ariel Naveh, Moshe Giladi, Eilon Kirson, Golan Bar-Tal, Tali Voloshin-Sela
  • Patent number: 11471700
    Abstract: An active implantable medical device includes an encapsulation (1) defining an inner space sealingly separated from an outer environment by walls transparent to a given wavelength range. The walls have a first main wall (1a) and a second main wall (1b) facing one another and separated from one another by an inner height (Hi) of the inner space. An encapsulation includes a housing formed by a first component (2) and a second component (3) both made of a single material and hermetically joined to one another along a single interface (23) to define the inner space hermetically sealed by the walls from the outer environment. An inner space contains an electronic, and facing a wall of the encapsulation. wherein joining of the first component and second components (2, 3) is carried out by welding without addition of a third material, the inner space has a volume (Vi) of at least 2 cm3.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 18, 2022
    Assignee: SYNERGIA MEDICAL
    Inventors: Carmen Godfraind, Pascal Doguet, Aurélie De Cock De Rameyen, Aurore Nieuwenhuys
  • Patent number: 11471668
    Abstract: A method that may include the steps of positioning a contact assembly, including a plurality of electrically conductive contacts that are respectively connected to a plurality of lead wires, on a shell formed from a first resilient material to form an electrode array sub-assembly, positioning the electrode array subassembly in a cochlear implant electrode array mold, and introducing a second resilient material into the mold to form a cochlear implant electrode array flexible body, on which the contacts are located, that is defined by the first and second flexible materials.
    Type: Grant
    Filed: December 21, 2019
    Date of Patent: October 18, 2022
    Assignee: Advanced Bionics AG
    Inventors: Candelaria Salvatierra, Bing Xu
  • Patent number: 11464979
    Abstract: A method of applying a neural stimulus with an implanted electrode array involves applying a sequence of stimuli configured to yield a therapeutic effect while suppressing psychophysical side effects. The stimuli sequence is configured such that a first stimulus recruits a portion of the fibre population, and a second stimulus is delivered within the refractory period following the first stimulus and the second stimulus being configured to recruit a further portion of the fibre population. Using an electrode array and suitable relative timing of the stimuli, ascending or descending volleys of evoked responses can be selectively synchronised or desynchronised to give directional control over responses evoked.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: October 11, 2022
    Assignee: Saluda Medical Pty Ltd
    Inventors: John Louis Parker, James Hamilton Wah, Dean Michael Karantonis, Milan Obradovic, Robert Bruce Gorman
  • Patent number: 11464595
    Abstract: A surgical system includes an insertion assembly and a drape shroud assembly mounted on the insertion assembly. When a sleeve of a surgical drape draping the insertion assembly is fastened to the drape shroud assembly, the sleeve is divided into two pockets. Instead of managing one long tube, the management problem of the drape sleeve is reduced to managing a plurality of shorter tubes. Shorter tubes make it easier for excess sleeve material to accordion as the tube length shortens instead of possibly bowing out and contacting a part of the insertion assembly or some other part of the surgical system.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: October 11, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Craig R. Ramstad, Anthony K. McGrogan, Todd R. Solomon
  • Patent number: 11464977
    Abstract: Apnea events may be detected based on a primary biomarker, e.g., respiration, in the one or more physiological signals. The apnea events may be characterized as one of an obstructive sleep apnea (OSA) event, a central sleep apnea (CSA) event, or a combination OSA/CSA event based on a secondary biomarker, e.g., a frequency spectrum or a morphology of the respirations in the one or more physiological signals. A first electrical stimulation may be provided to treat OSA in response to a first one or more of the apnea events being characterized as OSA events. A second electrical stimulation may be provided to treat CSA in response to a second one or more of apnea events being characterized as CSA events. A third electrical stimulation may be provided to treat combination OSA/CSA in response to a third one or more of the apnea events being characterized as combination OSA/CSA events.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: October 11, 2022
    Assignee: Medtronic, Inc.
    Inventors: Randal C. Schulhauser, Avram Scheiner, Linnea R. Lentz
  • Patent number: 11464417
    Abstract: A plurality of electrophysiological signals measured by a respective plurality of electrodes carried by a multi-dimensional catheter can be sorted relative to a direction of interest, such as a cardiac activation wavefront direction. An electroanatomical mapping system can be used to determine the orientation of the multi-dimensional catheter relative to the direction of interest. For example, the user can manually adjust the orientation by manipulating a slider, a wheel, or a similar graphical user interface control. As another example, the user can draw a presumed orientation on a geometric model. Once the orientation is determined, the system can sort the plurality of electrophysiological signals and output a graphical representation of the sorted plurality of electrophysiological signals, for example as a plurality of traces.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 11, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Eric S. Olson