Patents Examined by Anthony J Zimmer
  • Patent number: 11613795
    Abstract: There is provided a cobalt-based alloy product comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 5% or less Fe and 30% or less Ni, the total amount of Fe and Ni being 30% or less; W and/or Mo, the total amount of W and Mo being 5-12%; at least one of Ti, Zr, Hf, V, Nb and Ta, the total amount of Ti, Zr, Hf, V, Nb and Ta being 0.5-2%; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The product is a polycrystalline body of matrix phase crystal grains. In the matrix phase crystal grains, post-segregation cells with an average size of 0.13-2 ?m are formed, wherein components constituting an MC type carbide phase comprising Ti, Zr, Hf, V, Nb and/or Ta are segregated along boundary regions of the post-segregation cells.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 28, 2023
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yuting Wang, Shinya Imano, Shigenobu Eguchi
  • Patent number: 11607734
    Abstract: Methods for the manufacture of fine metal powders from metal carboxylate compounds such as metal oxalate compounds. The method includes decomposing particulates of the metal oxalate compound by heating to a decomposition temperature in the presence of a dilute hydrogen gas to decompose the metal oxalate compound, and forming a fine metal powder by heating to a higher refining temperature to remove contaminants from the metal powder. The method may include the conversion of a non-oxalate metal compound to a hydrated metal oxalate and the dehydration of the hydrated metal oxalate before decomposition to the metal. The method is applicable to the production of a wide variety of metals, and is particularly applicable to the production of rare earth metals of high purity and fine particle size.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: March 21, 2023
    Assignee: HELA NOVEL METALS LLC
    Inventor: Henry W. Kasaini
  • Patent number: 11607375
    Abstract: An oil-in-water type emulsion is characterized in that a fumed silica particle group in which lower order aggregates are aggregated with each other to form a higher order aggregate by a non-chemical bond forms a network-like surrounding structure including an oil inside the network-like surrounding structure.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 21, 2023
    Assignee: WACKER CHEMIE AG
    Inventors: Kenji Igarashi, Mikiko Kimura
  • Patent number: 11608545
    Abstract: A conductive supporting member includes an outer portion that includes a Cu matrix phase and a second phase dispersed in the Cu matrix phase and containing a Cu—Zr compound and that has an alloy composition represented by Cu-xZr (x is atomic % of Zr and 0.5?x?16.7 is satisfied) and an inner portion that is present on an inner side of the outer portion, is formed of a metal containing Cu, and has higher conductivity than the outer portion.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: March 21, 2023
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Takashi Goto, Hirokazu Katsui, Naokuni Muramatsu, Takanari Nakajima
  • Patent number: 11608551
    Abstract: New aluminum alloys are disclosed and generally include 0.6-1.4 wt. % Si, 0.25-0.90 wt. % Mg, wherein the ratio of wt. % Si to wt. % Mg is from 1.05:1 to 5.0:1, 0.25-2.0 wt. % Cu, 0.10-3.5 wt. % Zn, 0.01-1.0 wt. % Fe, up to 0.8 wt. % Mn, up to 0.25 wt. % Cr, up to 0.20 wt. % Zr, up to 0.20 wt. % V, and up to 0.15 wt. % Ti, wherein the total of Fe+Mn+Cr+Zr+V+Ti is not greater than 2.0 wt. %, the balance being aluminum and impurities. The new aluminum alloys may include Q phase precipitates. In some embodiments, the solvus temperature of the Q phase precipitates is not greater than 950° F.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: March 21, 2023
    Assignee: Howmet Aerospace Inc.
    Inventors: Jen C. Lin, Gabriele F. Ciccola, Santosh Prasad, Wei Wen, Raymond J. Kilmer
  • Patent number: 11602791
    Abstract: A process for additive manufacturing of a metal alloy material is provided that includes: a) providing a feedstock powder comprising base powder particles with nanoparticles attached to surfaces of the base powder particles; b) providing an additive manufacturing system with a laser power source relatively movable at a scan speed; c) wherein the additive manufacturing system has a process window for the feedstock powder; and d) exposing the feedstock powder to a predetermined power input from the laser power source at a predetermined scan speed to produce the metal alloy material. The concentration by volume of nanoparticles within the feedstock powder is such that independent first and second microstructures may be produced within the metal alloy material.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 14, 2023
    Assignee: Raytheon Technologies Corporation
    Inventors: John A. Sharon, Paul Sheedy, Ranadip Acharya, Vijay Narayan Jagdale
  • Patent number: 11603578
    Abstract: An operation method of a copper-smelting furnace is characterized by including supplying an Fe metal source into a copper-smelting furnace together with a feeding material including copper concentrate and a flux, the copper concentrate including Al, the Fe metal source including an Fe metal of 40 mass % to 100 mass %.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: March 14, 2023
    Assignee: PAN PACIFIC COPPER CO., LTD.
    Inventors: Tatsuya Motomura, Yuki Soma
  • Patent number: 11597012
    Abstract: A method of providing an article having a set of directional channels, including a first directional channel, therein is described. The method comprises preparing a mixture including particles comprising a first material and a first binding agent. The method comprises providing an article precursor by surrounding a pattern comprising a second material with the mixture. The method comprises heating the article precursor thereby coalescing the particles to provide the article. The method comprises removing the pattern by reacting the second material to form a gaseous product, thereby providing the set of directional channels in the article, wherein the set of directional channels corresponds with the removed pattern. Such an article is also described.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: March 7, 2023
    Assignee: The University of Liverpool
    Inventors: Yuyuan Zhao, Kaikan Diao
  • Patent number: 11597987
    Abstract: A method comprises providing a molten aluminum alloy selected from the group consisting of 6000 series aluminum alloys comprises chromium (Cr) in a range of between 0.001 wt % to 0.05 wt %. The molten aluminum alloy is formed into a formed body having beta-AlFeSi particles. The formed body is solution heat treated at a temperature in a range of 1,025-1,050° F. to form a heat-treated body. The solution heat treating transforms substantially all of the beta-AlFeSi particles into alpha-AlFeSi particles such that the heat-treated body is substantially free of the beta-AlFeSi particles.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: March 7, 2023
    Assignee: JOHNSON BRASS & MACHINE FOUNDRY, INC.
    Inventors: Arvin Montes, Lance Johnson
  • Patent number: 11590568
    Abstract: Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to scrap materials, dehydrogenated or non-hydrogenated feed material, recycled used powder, and gas atomized powders. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: February 28, 2023
    Assignee: 6K Inc.
    Inventors: Sunil Bhalchandra Badwe, Scott Joseph Turchetti, Makhlouf Redjdal
  • Patent number: 11594344
    Abstract: A method for preparing a powder comprising an intimate mixture of U3O8 particles and PuO2 particles and which may further comprise particles of ThO2 or NpO2. The method comprises: preparing, via oxalic precipitations, an aqueous suspension S1 of particles of uranium(IV) oxalate and an aqueous suspension S2 of particles of plutonium(IV) oxalate; mixing the aqueous suspension S1 with the aqueous suspension S2 to obtain an aqueous suspension S1+2; separating the aqueous suspension S1+2 into an aqueous phase and a solid phase comprising the particles of uranium(IV) oxalate and the particles of plutonium(IV) oxalate; and calcining the solid phase to convert (1) the particles of uranium(IV) oxalate to particles of triuranium octoxide and (2) the particles of plutonium(IV) oxalate to particles of plutonium(IV) dioxide, whereby the powder is obtained.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: February 28, 2023
    Assignees: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES, ORANO RECYCLAGE
    Inventors: François Poncelet, Nicolas Vigier, Bénédicte Arab-Chapelet, Aurélie Gauthe, Eléonore Welcomme, Marie Hélène Noire
  • Patent number: 11590576
    Abstract: A method of forming a high temperature sensor includes preparing a substrate having a surface from an electrically insulative material having a first coefficient of thermal expansion (CTE), preparing an electrical conductor from a metal material having a second CTE that is different from the first CTE, and creating an interface between the electrical conductor and the substrate with a CTE blending medium that is provided between the substrate and the electrical conductor. The CTE blending medium accommodates differing thermal expansion rates of the substrate and the electrical conductor at temperatures of at least 700° C.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: February 28, 2023
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Navin Sakthivel, Aaron Avagliano, Farhat Shaikh, Wei Chen, Dan Lu
  • Patent number: 11592473
    Abstract: This application relates to a method of preparing a composite material for a semiconductor test socket, and a composite material prepared through the method. In one embodiment, the method includes preparing a powder mixture including (i) a metal powder comprising aluminum or aluminum alloy particles and magnesium particles and (ii) a polymer powder. The method may also include sintering the powder mixture to produce the composite material using a spark plasma sintering (SPS) process. This application also relates to a method of manufacturing a semiconductor test socket, the method including forming an insulating portion of the semiconductor test socket with the composite material. This application further relates to a semiconductor test socket produced through the method.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 28, 2023
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Patent number: 11591683
    Abstract: There is provided a method of treating a nickel base super alloy (NiSa) article. First, the NiSa article having fine grains is obtained. The NiSa article has a uniform distribution of the fine grains and substantially uniform mechanical properties throughout. One or more regions within the NiSa article are mechanically deformed. Then, the NiSa article is heat treated to obtain coarse grains in the one or more regions, the coarse grains having a size that is larger than that of the fine grains of the NiSa article outside of the one or more regions.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: February 28, 2023
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Georges, Orlando Scalzo, Marc Lorenzo Campomanes
  • Patent number: 11584657
    Abstract: A method for isolating a humic substance from alumina process liquor is provided herein. Separate from or within the method, bauxite is processed to form the alumina process liquor. The method includes providing a diallyldimethylammonium chloride-containing polymer. The method further includes providing an amine-containing polymer. The method further includes combining the diallyl dimethyl ammonium chloride, the amine-containing polymer, and the alumina process liquor, to isolate the humic substance from the alumina process liquor.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: February 21, 2023
    Assignee: Solenis Technologies, L.P.
    Inventors: Clive Roscoe, Lawrence J. Andermann
  • Patent number: 11583920
    Abstract: An example of a method, for three-dimensional (3D) printing, includes applying a build material and patterning at least a portion of the build material. The patterning includes selectively applying a wetting amount of a binder fluid on the at least the portion of the build material and subsequently selectively applying a remaining amount of the binder fluid on the at least the portion of the build material. An area density in grams per meter square meter (gsm) of the wetting amount ranges from about 2 times less to about 30 times less than area density in gsm of the remaining amount.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: February 21, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, James McKinnell
  • Patent number: 11584647
    Abstract: The present invention discloses a preparation process of food-grade potassium dihydrogen phosphate, wherein phosphoric acid prepared from wet-process phosphoric acid is used for the preparation of high-purity potassium dihydrogen phosphate. The preparation process of food-grade potassium dihydrogen phosphate provided in the present invention effectively reduces the preparation cost of the high-purity potassium dihydrogen phosphate and has the advantage of high process controllability, and by such a process, high-purity potassium dihydrogen phosphate crystals that meet the food-grade requirements can be produced, which crystals have uniform particle size distribution and comprises few fine powder, having a very high market value.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 21, 2023
    Assignee: WENGFU DAZHOU CHEMICAL CO., LTD.
    Inventors: Jia Shi, Yong Fu, Jun Zhang, Hui Liu, Qiang Zhao, Yiliang Mo
  • Patent number: 11577315
    Abstract: The present application provides a 3D printing method. The present application can provide as a method for efficiently performing 3D printing, for example, a 3D printing method capable of more rapidly and efficiently producing a three-dimensional shape precisely realized up to a fine portion.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: February 14, 2023
    Inventors: Dong Woo Yoo, Jin Kyu Lee
  • Patent number: 11578390
    Abstract: The present invention refers to a gray cast iron alloy with chemical composition especially developed to promote high hot mechanical strength and good thermal conductivity, with antimony and nitrogen contents, wherein the antimony content ranges from 0.05 to 0, 12% by weight, and the nitrogen content ranges from 0.008 to 0.013% by weight, based on the total weight of the gray cast iron alloy.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: February 14, 2023
    Assignee: Tupy S. A.
    Inventors: Wilson Luiz Guesser, Eder dos Reis Silva, Ivo Baumer, Carlos de Souza Cabezas
  • Patent number: 11578235
    Abstract: The present invention relates to cerium-based particles and their use as a component of a composition for polishing. The present invention also relates to the method of preparation of the cerium-based particles.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: February 14, 2023
    Assignee: RHODIA OPERATIONS
    Inventors: Eisaku Suda, Manabu Yuasa, Réka Toth