Patents Examined by Arnold M. Kinkead
  • Patent number: 11431291
    Abstract: A nano-oscillator device includes a switching element configured to be switched to an ON state at a threshold voltage or above and switched to an OFF state below a holding voltage; and a load element connected to the switching element in series. In the nano-oscillator device, vibration characteristics are implemented by using a switching element and a load element connected thereto in series. Also, the oscillation frequency of the output waveform of the oscillator may be adjusted in real time according to a gate voltage by using a field effect transistor serving as a load element. Using a synchronization characteristic in which the oscillation frequency and phase are locked with respect to an external input, it is possible to implement a computing system based on a network in which a plurality of oscillator devices are coupled.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: August 30, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Suyoun Lee, Seon Jeong Kim, Jong-Keuk Park, Inho Kim, Kyeong Seok Lee, Gyu Weon Hwang, Joon Young Kwak, Jaewook Kim, Yeonjoo Jeong, Jongkil Park
  • Patent number: 11429887
    Abstract: One example includes a tunable current-mirror qubit. The qubit includes a plurality of flux tunable elements disposed in a circuit loop. A first portion of the flux tunable elements can be configured to receive a first input flux and a remaining portion of the flux tunable elements can be configured to receive a second input flux to control a mode of the tunable current-mirror qubit between a microwave excitation mode to facilitate excitation or quantum state manipulation of the tunable current-mirror qubit via a microwave input signal and a noise-protected mode to facilitate storage of the quantum state of the tunable current-mirror qubit. The qubit also includes at least one capacitor interconnecting nodes between respective pairs of the flux tunable elements to facilitate formation of Cooper-pair excitons in each of the microwave excitation mode and the noise-protected mode.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 30, 2022
    Assignees: NORTHROP GRUMMAN SYSTEMS CORPORATION, NORTHWESTERN UNIVERSITY
    Inventors: David George Ferguson, Cheong Yiu Li, Jens Koch, Moe Shwan Khalil
  • Patent number: 11424745
    Abstract: An oscillation circuit includes: a power supply generation module and an oscillator. The power supply generation module is configured to generate a positive temperature coefficient voltage based on a positive temperature coefficient current; and the positive temperature coefficient voltage serves as a power supply of the oscillator. The oscillator includes: a first ring topological structure and a second ring topological structure. The first ring topological structure is formed by a plurality of first inverters connected end to end and configured to transmit an oscillation signal at a first transmission speed; and the second ring topological structure is formed by a plurality of second inverters connected end to end and configured to transmit the oscillation signal at a second transmission speed. The first ring topological structure is electrically connected with the second ring topological structure, and the second transmission speed is less than the first transmission speed.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: August 23, 2022
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Jianni Li
  • Patent number: 11422048
    Abstract: In order to inexpensively measure torque on a shaft such that the measurement is as independent as possible from distance changes or material inconsistencies of the shaft around the circumference thereof, the invention provides a torque transmitter for a torque sensor for measuring a torque on a shaft, having a carrier plate that has a plurality of sensor element carrier plate regions, on each of which at least one sensor element for recording magnetic field changes, caused by the magnetoelastic effect, is arranged, and at least one enclosure region that is designed to at least partly enclose the shaft around the circumference of the shaft, wherein at least one flexible connection region is provided by way of which at least one of the sensor element carrier plate regions is able to be pivoted relative to another sensor element carrier plate region or relative to the at least one enclosure region.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 23, 2022
    Assignee: Trafag AG
    Inventor: Christoph Schanz
  • Patent number: 11418202
    Abstract: An oscillator circuit includes a current source, an oscillating section, a first capacitor, and a setting section. The current source is coupled to a connection node and causes a current having a current value based on an input voltage to flow from a first power node to the connection node. The oscillating section is on a current path between the connection node and a second power node. The oscillating section oscillates at an oscillation frequency based on a current flowing through the current path. The first capacitor is between the connection node and the second power node. The first capacitor has a capacitance that varies in accordance with a voltage at the connection node. The setting section that performs variation operation based on the voltage at the connection node. The variation operation is operation of varying an impedance between the connection node and the second power node.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: August 16, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Uichi Ishida, Takashi Nakamura
  • Patent number: 11404760
    Abstract: An electrical power distribution splitter is designed to receive high wattage electrical power, e.g. 80 W-600 W, and then to “split” that power into multiple low output wattage electrical power, e.g. 60 W/12V or 96 W/24V. An IC and circle board in the distribution splitter is used to reduce output power in this manner. The result is the ability to input a single large wattage electrical power supply to a distribution splitter which then outputs multiple lower wattages to a variety of individual different circuits, and, in so doing, a Class 2 UL power supply can be utilized. This is especially important in the signage industry where, for example, one large wattage power electrical supply feeding into the power distribution splitter can supply multiple smaller wattage power to different circuits in one sign.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: August 2, 2022
    Inventor: Sikai Chen
  • Patent number: 11405000
    Abstract: A transformer based voltage controlled oscillator (VCO) is provided with a primary resonant circuit having a first inductor connected in parallel with a variable first capacitance circuit. A secondary resonant circuit is formed from a second inductor connected in parallel with a variable second capacitance circuit, and also includes a mode control circuit. The mode control circuit controls the direction of current flow through the secondary resonant circuit inductor. The first and second inductors are inductively mutually coupled in either an even mode or an odd mode in response to the mode control circuit. The VCO supplies a first resonant frequency in response to even mode operation, or a second resonant frequency, greater than the first resonant frequency, responsive to odd mode operation. The VCO may include a first electrically tunable varactor shunted across the first capacitance circuit and a second electrically tunable varactor shunted across the second capacitance circuit.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: August 2, 2022
    Assignee: IQ-Analog Inc.
    Inventor: Devon Thomas
  • Patent number: 11405025
    Abstract: A frequency divider functionality detection and adjustment circuit includes an auxiliary voltage controlled oscillator (VCO) coupled to a first multiplexer (MUX), a programmable divider coupled to the first MUX, a second MUX coupled to the programmable divider, a counter coupled to the second MUX, and a controller coupled to the counter, the controller configured to adjust a supply voltage provided to the programmable divider based on a measured divide ratio, NMEAS.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: August 2, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Shilei Hao, Yiwu Tang, Yunliang Zhu
  • Patent number: 11398797
    Abstract: A crystal oscillator and a method for fabricating the same is provided. In the method, a crystal package is provided. The crystal package includes a crystal blank and at least one laser-penetrating area. The laser-penetrating area is exposed outside. The crystal package is provided with at least one airtight space therein. At least one getter is formed in the airtight space. The location of the laser-penetrating area corresponds to that of the getter. A laser beam penetrates through the laser-penetrating area to activate the getter, thereby increasing the degree of vacuum of the airtight space.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: July 26, 2022
    Assignee: TXC CORPORATION
    Inventors: Wun-Kai Wang, Cheng-Wei Lin, Chih Hung Chiu, Chih Hsun Chu
  • Patent number: 11394202
    Abstract: Methods and apparatus can be used to turn an existing 240 VAC or 480 VAC/600 VAC outlet into two or more time-sharing, i.e., one operating at a time, outlets. An AC switch box with two time-sharing outlets can be made with either a mechanical switch for switching which load receives power, or automatically, by a microcomputer system, for example. In the automatic AC switch box, the non-favored outlet may be typically powered on unless a load is detected at the favored/default outlet, when power to the non-favored outlet is automatically disconnected until the load is reduced or eliminated.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: July 19, 2022
    Inventors: Vincent Hung Nguyen, Trang Lan Do
  • Patent number: 11387780
    Abstract: An oscillator device includes a touchpad, and an oscillator that includes an oscillation core having a second terminal configured to output an oscillation signal generated by the oscillation core based on an input to a first terminal of the oscillation core, a first capacitor connected between the first terminal and a ground, and a second capacitor connected between the second terminal and the ground, where the first capacitor is connected to the touchpad, and where a total capacitance of the first capacitor is different from a total capacitance of the second capacitor.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: July 12, 2022
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Tae Ho Lim, Joo Yul Ko
  • Patent number: 11387070
    Abstract: There is described a device for generating electromagnetic field oscillation in a RF device or cavity. The device generally has a photo-diode configured for receiving a laser pulse train and emitting a first electrical signal based thereon, the first electrical signal having a plurality of frequencies; and a harmonics selector configured to output a second electrical signal having one or more frequency of the first electrical signal, the one or more frequency being selected in a manner for the output to generate the electromagnetic field oscillation in the RF device or cavity.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: July 12, 2022
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Martin Otto, Bradley Siwick
  • Patent number: 11385269
    Abstract: A frequency sensor is provided. The frequency sensor may include: a magnetoresistive nano-oscillator including a magnetic heterostructure of at least a magnetic free layer, a magnetic reference layer and a non-magnetic intermediate layer arranged between the magnetic free layer and the magnetic reference layer; a coupling arrangement for coupling an incoming signal to at least one magnetic mode of the magnetic free layer, and a frequency estimator. The frequency estimator may be configured to: perform a plurality of voltage measurements across the magnetoresistive nano-oscillator over time; calculate a time averaged voltage across the magnetoresistive nano-oscillator based on the plurality of voltage measurements; estimate, over a finite range of frequencies, a frequency of the incoming signal based on the calculated time averaged voltage, and output a signal representative of the estimated frequency. A method of estimating a frequency of an incoming signal is also provided.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: July 12, 2022
    Assignee: INL-INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY
    Inventors: Alex Jenkins, Ricardo Alexandre De Matos Antunes Ferreira
  • Patent number: 11387783
    Abstract: Terahertz device includes first resin layer, columnar conductor, wiring layer, terahertz element, second resin layer, and external electrode. Resin layer includes first resin layer obverse face and first resin layer reverse face. Columnar conductor includes first conductor obverse face and first conductor reverse face, penetrating first resin layer in z-direction. Wiring layer spans between first resin layer obverse face and first conductor obverse face. The terahertz element includes element obverse face and element reverse face, and converts between terahertz wave and electric energy. Second resin layer includes second resin layer obverse face and second resin layer reverse face, and covers wiring layer and terahertz element. External electrode, disposed offset in a direction first resin layer reverse face faces with respect to first resin layer, is electrically connected to columnar conductor.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: July 12, 2022
    Assignee: ROHM CO., LTD.
    Inventors: Kazuisao Tsuruda, Hideaki Yanagida
  • Patent number: 11387781
    Abstract: A fast start-up crystal oscillator (XO) and a fast start-up method thereof are provided. The fast start-up XO may include a XO core circuit, a frequency synthesizer, and a fast start-up interfacing circuit, wherein the frequency synthesizer may include a voltage control oscillator (VCO) and a divider. The XO core circuit generates a XO signal having a XO frequency. The VCO generates a VCO clock having a VCO frequency, and the divider generates a divided clock having a divided frequency, wherein the VCO frequency is divided by a divisor of the divider to obtain the divided frequency. The fast start-up interfacing circuit transmits the divided clock to the XO core circuit, and then generates a reference clock having the XO frequency according to the XO signal. More particularly, the VCO frequency is calibrated according to the reference clock, in order to make the divided frequency approach the XO frequency.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: July 12, 2022
    Assignee: MEDIATEK INC.
    Inventors: Keng-Meng Chang, Yao-Chi Wang, Yanjie Mo, Sen-You Liu, Chun-Ming Lin
  • Patent number: 11374583
    Abstract: Injection locked resonator-based oscillators in accordance with various embodiments of the invention are described. An embodiment includes an injection locked resonator-based oscillator, that includes: an amplifier, a feedback circuit, a delayed locked loop (DLL), an off-chip high-frequency resonator that generates a resonance frequency, a switch connected to a power source Vdd, and a voltage-controlled oscillator (VCO), where an input to the amplifier is connected to both the high-frequency resonator and the DLL to lock a signal, where an output from the amplifier is connected to the feedback circuit that is provided back to the high-frequency resonator.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: June 28, 2022
    Assignee: Mixed-Signal Devices Inc.
    Inventor: Srikar Bhagavatula
  • Patent number: 11374580
    Abstract: A PLL includes a phase-frequency-detector-and-charge-pump-circuit (PFDCPC) receiving a reference signal and divided signal, and generating a charge-pump current. A loop-filter is between output of the PFDCPC and a reference-voltage. A first voltage-to-current converter (V2I1) has low gain, and a second voltage-to-current converter (V2I2) has high gain. A low-gain-path is between outputs of the PFDCPC and V2I1, and a high-gain-path is between the outputs of the PFDCPC and V2I2. A current-controlled-oscillator receives an input signal, and generates an output signal. A loop divider divides the output signal by a divider-value, producing the divided signal. The low-gain-path runs directly from the PFDCPC, through the V2I1, to the input of the current-controlled-oscillator. The high-gain-path runs from the PFDCPC to the loop-filter, from a tap of the loop-filter to a low-pass filter through a current mirror, from a tap of the low-pass filter through the V2I2, to the input of the current-controlled-oscillator.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: June 28, 2022
    Assignee: STMicroelectronics International N.V.
    Inventors: Sagnik Mukherjee, Ankit Gupta
  • Patent number: 11368126
    Abstract: A first switch is operable to couple a start-up oscillator circuit to a first crystal pin during operation in a start-up mode and decouple the start-up oscillator circuit from the first crystal pin during operation in a normal mode, and a second switch is operable to couple the start-up oscillator circuit to a second crystal pin during operation in the start-up mode and decouple the start-up oscillator circuit from the second crystal pin during operation in the normal mode. A switched oscillator circuit is coupled to the startup oscillator during operation in the startup mode, and to the first and second crystal pins during operation in the start-up and normal modes. The switched oscillator circuit includes a sample and charge circuit which is configured to sample a direct current (DC) level of the first crystal pin and pre-charge a first coupling capacitor during operation in the startup mode.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: June 21, 2022
    Assignee: NXP B.V.
    Inventors: Ricardo Pureza Coimbra, Stefano Pietri, Vitor Moreira Gomes, Eduardo Ribeiro da Silva
  • Patent number: 11365969
    Abstract: A MEMS device and a corresponding operating method. The MEMS device is equipped with an oscillatory micromechanical system, which is excitable in a plurality of useful modes, the oscillatory micromechanical system including at least one system component, which is excitable in at least one parasitic spurious mode by a superposition of the useful modes. An adjusting device is provided, which is configured in such a way that it counteracts the parasitic spurious mode by application of an electromagnetic interaction to the system component.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: June 21, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Lassl, Matthias Kuehnel, Niels Bode, Nils Felix Kuhlmann, Peter Degenfeld-Schonburg, Reinhard Neul, Frank Schatz
  • Patent number: 11368125
    Abstract: A crystal oscillator reducing phase noise and a semiconductor chip including the same are provided. The crystal oscillator includes a transconductance circuit electrically connected to a crystal, a load capacitor connected to the transconductance circuit, a feedback resistance circuit connected between an input terminal of the transconductance circuit and an output terminal of the transconductance circuit, the feedback resistance circuit configured to provide a feedback resistance, and a variable resistance controller configured to generate a resistance control signal for controlling the feedback resistance, the resistance control signal causing the feedback resistance to have a first value in a first period and a second value in a second period, the first value being less than the second value, the first period corresponding to a first portion of a cycle of the clock signal, and the second period corresponding to a second portion of the cycle different from the first portion.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: June 21, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaehong Jung, Wonkang Kim, Seungjin Kim, Seunghyun Oh