Patents Examined by Bach Dinh
  • Patent number: 8975503
    Abstract: An apparatus comprising a structure and an energy harvesting device. The structure is configured to have a first portion and a second. The energy harvesting device is formed as part of the structure. The energy harvesting device is configured to generate an electrical current when a difference in temperature occurs between the first portion and the second portion.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: March 10, 2015
    Assignee: The Boeing Company
    Inventors: Bradley James Mitchell, Ty A. Larsen, Trevor Milton Laib, Kevin Scott Callahan, Henry VanRensselaer Fletcher, III
  • Patent number: 8975508
    Abstract: A solar concentrator (1) having a longitudinal axis of extension (3) and a cross-section at right angles to the longitudinal axis substantially equal for a continuum of cross-sections, and comprising a reflective system (6) and a refractive system (7), the reflective system forming an optical inlet (8) and an optical outlet (9) and comprising two semi-portions positioned specularly relative to the plane of symmetry, where the cross-section profile of the refractive system is a triangle (11) having a base (12) at the optical outlet (9) and apex (13) on the axis of symmetry (5), where the cross-section profile of each semi-portion of the reflective system comprises a segment (18) in the shape of a parabola having an axis (20) forming with the axis of symmetry an acceptance angle (?0) greater than zero and a focus (F) on the axis of symmetry, and where the focus falls inside the triangle.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 10, 2015
    Assignee: Fondazione Centro Internazionale Della Fotonica per Energia
    Inventors: Giorgio Grasso, Francesco Morichetti, Silvia Maria Pietralunga, Aldo Righetti, Maria Chiara Ubaldi
  • Patent number: 8962991
    Abstract: Photovoltaic cells with one or more subcells are provided with a wide band gap, pseudomorphic window layer of at least 15 nm in thickness and with an intrinsic material lattice constant that differs by at least 1% from an adjacent emitter layer. This window layer has a higher band gap than a window layer with substantially the same intrinsic material lattice constant as the adjacent emitter layer, which increases the light transmission through the window, thereby increasing the current generation in the solar cell. The quality of being pseudomorphic material preserves a good interface between the window and the emitter, reducing the minority carrier surface recombination velocity. A method is provided for building a wide band gap, pseudomorphic window layer of a photovoltaic cell that has an intrinsic material lattice constant that differs by at least 1% from the adjacent emitter layer.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 24, 2015
    Assignee: Solar Junction Corporation
    Inventors: Rebecca Elizabeth Jones-Albertus, Ferran Suarez Arias, Michael West Wiemer, Michael J. Sheldon, Homan B. Yuen
  • Patent number: 8962985
    Abstract: A solar cell includes a semiconductor substrate, an emitter region positioned at the semiconductor substrate, a first electrode which is positioned on the semiconductor substrate and is connected to the emitter region, a second electrode which is positioned on the semiconductor substrate and is connected to the semiconductor substrate, and a second electrode current collector which is positioned on the semiconductor substrate and is connected to the second electrode. An overlap distance between the second electrode and the second electrode current collector in a first direction corresponding to an extension direction of a conductive film positioned on the second electrode current collector is less than an overlap distance between the second electrode and the second electrode current collector in a second direction crossing the first direction.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 24, 2015
    Assignee: LG Electronics Inc.
    Inventors: Youngsung Yang, Myungjun Shin, Minho Choi, Seongeun Lee
  • Patent number: 8940142
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction withy peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of Il-10 at a concentration of 4ng/nl is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: January 27, 2015
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris D. Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 8937241
    Abstract: A self-assembly nano-composite solar cell comprises a substrate, a first electrode layer, a composite absorption layer and a second electrode layer. The first electrode layer is formed on the substrate. The composite absorption layer is formed over the first electrode layer and includes a plurality of vertical nano-pillars, a plurality of gaps each formed between any two adjacent nano-pillars, and a plurality of bismuth sulfide nano-particles filled into the gaps and attached to the nano-pillars. The second electrode layer is formed over the composite absorption layer. Through etching and soaking in solutions, the composite absorption layer with nano-pillars and bismuth sulfide nano-particles is fabricated to form a self-assembly nano-composite solar cell having high power conversion efficiency.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 20, 2015
    Assignee: National Tsing Hua University
    Inventors: Che-Ning Yeh, Chun-Te Ho, Tri-Rung Yew
  • Patent number: 8932445
    Abstract: Methods for determining a concentration of an analyte in a sample, and the devices and systems used in conjunction with the same, are provided herein. In one exemplary embodiment of a method for determining a concentration of an analyte in a sample, a sample including an analyte is provided in a sample analyzing device having a working and a counter electrode. An electric potential is applied between the electrodes and a measurement of a parameter correlating to changes in a physical property of the sample analyzing device is calculated. A concentration of the analyte in view of the parameter correlating to a change in the physical property can then be determined Systems and devices that take advantage of the parameter correlating to changes in a physical property to make analyte concentration determinations are also provided.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 13, 2015
    Assignee: Cilag GmbH International
    Inventors: Ronald C. Chatelier, Alastair M. Hodges
  • Patent number: 8920619
    Abstract: The present invention provides a remote monitoring system for monitoring the operation of a fluid treatment system and/or the qualities, characteristics, properties, etc., of the fluid being processed or treated by the fluid treatment system. The present invention also relates to carbon nanotube sensors.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 30, 2014
    Assignee: Hach Company
    Inventors: Corey Alan Salzer, Russell Martin Young, Michael Mario Carrabba, Vishnu Vardhanan Rajasekharan, Christopher Patrick Fair, Terrance William Fitzgerald, Frank Howland Carpenter, Jr., John Edwin Lee
  • Patent number: 8916037
    Abstract: An instrument and method for accurately measuring target analyte levels is a gas sample over an extended range. The instrument includes (i) a sensor effective for detecting the analyte, and (ii) a barrier film having limited permeability for the analyte covering the inlet orifice on the sensor for reducing the flux of analyte into the sensor. The method involves (a) sensing the flux of target analyte passing through the barrier film and into sensing contact with the sensor, and (b) reporting a concentration of analyte by multiplying a concentration value previously correlated to the sensed flux by the flux reduction factor of the barrier film.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 23, 2014
    Assignee: Mocon, Inc.
    Inventors: Daniel W. Mayer, Michael D. Howe
  • Patent number: 8906210
    Abstract: A flux limiting layer for an intravenous amperometric biosensor is formed on a substrate to limit a diffusion rate of an analyte from blood to an enzyme electrode. The layer may be formed from ethylene vinylacetate (EVA) dissolved in a solvent such as paraxylene, spray-coated to cover a portion of the electrode, and cured to seal the electrode to the substrate. In a glucose sensor having glucose oxidase disposed on the electrode, thickness and concentration of the EVA layer are optimized to promote a linear output of electrode current as a function of blood glucose concentration.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 9, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventor: Kenneth M. Curry
  • Patent number: 8906214
    Abstract: A sensor element that may include a contamination-resistant coating on at least a portion thereof. The coating may include gamma alumina and a high temperature binder such as magnesium titanate. A sensor element that may include a contamination-resistant coating on at least a portion thereof. The coating may include gamma alumina, a high temperature binder such as magnesium titanate, and boehmite alumina. A method of making a contamination-resistant sensor element that may include mixing gamma alumina and a high temperature binder such as magnesium titanate to form a mixture, applying the mixture to at least a portion of a sensor element, and temperature treating the mixture to form a contamination-resistant coating on the sensor element.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 9, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, James Richard Waldrop, Velma Viane Massey, Donald Stanley Frost, Jr.
  • Patent number: 8900441
    Abstract: An ionic probe is provided according to the invention. The ionic probe includes an active electrode configured to generate a measurement signal for an external test fluid, a first reference electrode configured to generate a first reference signal, and an at least second reference electrode configured to generate at least a second reference signal. The measurement signal is compared to the first reference signal and the at least second reference signal in order to determine an ionic measurement of the external test fluid.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: December 2, 2014
    Assignee: Hach Company
    Inventors: John Robert Woodward, Pierre Antione Robert Livrozet, Jean-Francois Maurice Rene Schvan, Russell Martin Young, Kevin James West
  • Patent number: 8882987
    Abstract: A biosensor measurement system and a method for detecting abnormal measurement in a biosensor, which can significantly enhance the measurement precision without depending on the user's operation manner or the like, can be provided. A voltage application pattern for applying a voltage to a working electrode, a counter electrode, and a detection electrode has a halt period between a first application period and a second application period, and a reduction current measurement value obtained in the first application period is compared with a reduction current measurement value obtained in the second application period, and the measurement values are not outputted when a difference between the measurement values is outside a predetermined range.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: November 11, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventors: Toshiharu Yoshioka, Eriko Yamanishi, Hiroyuki Tokunaga
  • Patent number: 8871068
    Abstract: The disclosure concerns a high efficiency electrochemical sensor with high signal yield for determining an analyte in a fluid medium comprising, at least one reference electrode, at least one working electrode having particles of an electrocatalyst in an electrode matrix, and an enzyme that is suitable for determining an analyte is selectively covalently bound to the particles of the electrocatalyst. The disclosure also describes a process for producing the electrochemical sensor and a method for determining an analyte in a fluid medium using the electrochemical sensor. have a high efficiency and thus achieve a high signal yield.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: October 28, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Arnulf Staib, Thomas Meier, Reinhold Mischler, Harald Peschel, Martin Hajnsek
  • Patent number: 8858782
    Abstract: An ion-sensitive circuit can include a charge accumulation device, to accumulate a plurality of charge packets as a function of an ion concentration of a fluid, and at least one control and readout transistor, to generate an output signal as a function of the accumulated plurality of charge packets, the output signal representing the ion concentration of the solution. The charge accumulation device can include a first charge control electrode above a first electrode semiconductor region, an electrically floating gate structure above a gate semiconductor region and below an ion-sensitive passivation surface, a second charge control electrode above a second electrode semiconductor region, and a drain diffusion region. The first control electrode can control entry of charge into a gate semiconductor region in response to a first control signal. The ion-sensitive passivation surface can be configured to receive the fluid.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 14, 2014
    Assignee: Life Technologies Corporation
    Inventor: Keith Fife
  • Patent number: 8852415
    Abstract: A sensor element for determining at least one physical property of a gas in a measuring gas chamber, particularly for determining an oxygen concentration in an exhaust gas. The sensor element includes at least one first electrode and at least one second electrode, and at least one solid electrolyte connecting the first electrode and the second electrode. The second electrode is situated on the inside of the sensor element and is able to have gas from the measuring gas chamber applied to it via at least one gas access hole and at least one diffusion barrier. At least partially gas-impermeable cover layer is provided on the diffusion barrier, at least from area to area. The gas access hole has at least one chamfer in the vicinity of the cover layer.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: October 7, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Henrico Runge
  • Patent number: 8834694
    Abstract: The invention provides dry compositions for preparing and loading a sample on a gel for electrophoretic separation. The dry compositions preferably include a tracking dye and a sedimenting agent selected from a five-carbon polyol (e.g., ribitol, arabitol, or xylitol),iso-erythritol, maltitol, and saccharine. Methods for making and using, as well as kits comprising the disclosed compositions, are also provided.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: September 16, 2014
    Assignee: Mo Bio Laboratories, Inc.
    Inventors: Mark N. Brolaski, Vince Moroney, Suzanne Kennedy
  • Patent number: 8828205
    Abstract: Disclosed is a gas sensor, particularly a lambda probe, for determining the oxygen concentration in the exhaust gas of an internal combustion engine that is operated using a fuel-air mixture. Said gas sensor comprises a pump cell with an outer electrode that is exposed to the exhaust gas, an inner electrode located in a measuring chamber which is separated from the exhaust gas by means of a first diffusion barrier, and an electronic circuit for generating a voltage applied between the outer electrode and the inner electrode as well as for measuring and evaluating a pump current that is generated in said process in order to draw a conclusion therefrom about the composition of the fuel-air mixture.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: September 9, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Lothar Diehl, Thomas Seiler
  • Patent number: 8808530
    Abstract: The present invention includes methods and compositions having at least one nanoparticle for analyzing a chemical analyte. The device includes an electrochemical cell connected to a measuring apparatus, wherein the electrochemical cell comprises a container and at least one electrode comprising a surface modification; a solution within the container comprising one or more chemical analytes and one or more metal nanoparticles in the solution, wherein one or more electrocatalytic properties are generated by the one or more metal nanoparticles at the at least one electrode and the contact of individual nanoparticles can be measured.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: August 19, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Hongjun Zhou, Allen J. Bard, Fu-Ren F. Fan
  • Patent number: 8808515
    Abstract: The present invention is directed to membranes composed of heterocyclic nitrogen groups, such as vinylpyridine and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes described herein demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 19, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Tianmei Ouyang, Brian Cho