Patents Examined by Bao Q. Vu
  • Patent number: 7894224
    Abstract: A voltage drive system is provided having a plurality of modulators and a plurality of cascaded switching circuits which collectively generate a single-phase output signal to a load. Each modulator receives a phase current error and has an adder which generates a modulated phase current error based on the phase current error and based on a signal having a phase. For each respective modulator, the phase of the respective signal is different. Each respective modulator changes a respective gate input when the respective modulated phase current error changes from being within a predetermined current range to being outside of the predetermined current range. Each respective switching circuit receives the respective gate input and generates a respective output terminal voltage based on the respective gate input. The change in the respective gate input effectively causes a switching event of the respective switching circuit.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: February 22, 2011
    Assignee: DRS Power & Technologies, Inc.
    Inventors: James A Ulrich, Ashish R Bendre
  • Patent number: 7893670
    Abstract: A voltage regulator may comprise a regulator output configured to provide a regulated voltage, which may be controlled by an error amplifier based on the regulated voltage and a reference voltage. The error amplifier may control a source-follower stage to mirror a multiple of the current flowing in the source-follower stage into an internal pass device. A voltage developed by the mirror current may control an external pass device configured to deliver the load current into the regulator output. A first resistor may be configured to decouple a load capacitor coupled between the regulator output and reference ground, when the load current is below a specified value. A second resistor may be configured to create a bias current in the internal pass device even when the external pass device is close to cut-off region. A third resistor may be configured to counter the effects of negative impedance at the control terminal of the external pass device caused by the current-gain of the external pass device.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 22, 2011
    Assignee: Standard Microsystems Corporation
    Inventors: Srinivas K. Pulijala, Scott C. McLeod
  • Patent number: 7894222
    Abstract: Techniques are disclosed to limit the current in a switch of a switching power supply. An example switching regulator circuit includes a power switch to be coupled to an energy transfer element of a power supply. A controller to generate a drive signal is coupled to be received by the power switch to control the switching of the power switch. A short on time detector is included in the controller. The short on time detector is to detect an occurrence of a threshold number of one or more consecutive short on times of the switch. A frequency adjuster is also included in the controller and coupled to the short on time detector. The frequency adjuster is to adjust an oscillating frequency of an oscillator included in the controller in response to the short on time detector.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: February 22, 2011
    Assignee: Power Integrations, Inc.
    Inventors: Alex B. Djenguerian, Andrew J. Morrish
  • Patent number: 7888923
    Abstract: An apparatus is provided. The apparatus comprises a current sensor, an error amplifier, a comparator, an analog-to-digital converter (ADC), control logic, and drivers. The error amplifier is adapted to receive a reference voltage and a feedback voltage, and the comparator has a first input terminal and a second input terminal, where the sum of at least a first portion of a common mode voltage and an output of the error amplifier is input into the first input terminal, and wherein the sum of at least a second portion of the common mode voltage and an output of the current sensor is input into the second input terminal. The ADC receives the sum of the second portion of the common mode voltage and the output of the current senor. Additionally, the ADC has a plurality of internal threshold voltages that are between the common mode voltage and an overcurrent limit adjustment voltage.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Biranchinath Sahu
  • Patent number: 7889525
    Abstract: A multi-phase voltage regulator comprises a plurality of current supplying stages, each current supplying stage configured to supply a local output current equaling at least a portion of a load current output from the multi-phase voltage regulator; and a plurality of control circuits, each control circuit coupled to a respective one of the plurality of current supplying stages, wherein each control circuit calculates a control signal based, at least in part, on a sampled current representative of the respective local output current and a sampled current representative of a master output current. The control signal from each control circuit causes the respective current supplying stage to be disabled gradually over a first time interval if the sum of the local output current and the master output current is detected as being below a respective first predetermined level.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 15, 2011
    Assignee: Intersil Americas Inc.
    Inventor: Zaki Moussaoui
  • Patent number: 7888922
    Abstract: A power control system includes a switching power converter and a power factor correction (PFC) and output voltage controller. The PFC and output voltage controller provides a control signal to a switch to control power factor correction and regulate output voltage of the switching power converter. During a single period of the control signal, the PFC and output voltage controller determines the line input voltage, the output voltage, or both using a single feedback signal received from the switching power converter. The feedback signal is received from a switch node located between an inductor and the switch. The PFC and output voltage controller determines either the line input voltage or the output voltage, whichever was not determined from the feedback signal, using a second feedback signal received from either a PFC stage or a driver stage of the switching power converter.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: February 15, 2011
    Assignee: Cirrus Logic, Inc.
    Inventor: John L. Melanson
  • Patent number: 7889528
    Abstract: It is an object of the present invention to provide a rectifier circuit that can suppress deterioration or dielectric breakdown of a semiconductor element due to excessive current. A rectifier circuit of the present invention includes at least a first capacitor, a second capacitor, and a diode which are sequentially connected in series in a path which connects an input terminal and one of two output terminals, and a transistor. The second capacitor is connected between one of a source region and a drain region and a gate electrode of the transistor. Further, the other one of the source region and the drain region and the other one of two output terminals are connected each other.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 15, 2011
    Assignee: Semiconductor Energy Laroratory Co., Ltd.
    Inventor: Yutaka Shionoiri
  • Patent number: 7884583
    Abstract: Circuit and method for controlling a high bridge circuit with increased efficiency is disclosed. Circuitry is provided outputting gating signals to a high side driver and a low side driver responsive to a time varying input signal. A frequency measurement circuit determines a high speed mode when the input signal is at a frequency above a threshold, and the gating signal to the high side driver is inhibited. When the input signal frequency is below the threshold, the low side driver and the high side driver gating signals switch alternately. In an exemplary implementation, the frequency measurement circuit is provided as two counters outputting signals to a decision circuit which controls the half bridge circuit. Methods are provided for efficiently providing gating signals to the drivers of a half bridge circuit based upon the frequency of the input signal.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 8, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Lenz, Andrei Covalenco, Dan Dinu
  • Patent number: 7884506
    Abstract: An electronic device having at least a loop-shaped electric conductor generating electric power by electromagnetic induction is provided. The electronic device includes a voltage-detecting unit, a voltage-comparing unit and a separating unit. The voltage-detecting unit is configured to detect a voltage generated in the electric conductor by the electromagnetic induction. The voltage-comparing unit is configured to make a comparison between the voltage detected by the voltage-detecting unit and a predetermined reference voltage and determining whether the voltage detected by the voltage-detecting unit exceeds the predetermined reference voltage. The separating unit is configured to break an electric connection between the electronic conductor and an electronic circuit connecting to the electric conductor when the voltage-comparing unit determines that the voltage detected by the voltage-detecting unit exceeds the predetermined reference voltage.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: February 8, 2011
    Assignees: Sony Ericsson Mobile Communications Japan, Inc., Seiko Epson Corporation
    Inventors: Hiroshi Kato, Kuniharu Suzuki, Katsuya Suzuki, Manabu Yamazaki, Kota Onishi, Kentaro Yoda
  • Patent number: 7884594
    Abstract: Inventive embodiments described here provide for accurately distributing a voltage reference to multiple cores of an integrated circuit (IC). A quasi-differential interface is used to transmit the voltage reference, and a virtual ground is established at a receiver located at each core location on the integrated circuit. In one embodiment, the receiver is an operational transconductance amplifier (OTA) that converts a virtual-ground-referenced voltage input to a current. In one embodiment, the OTA converts the virtual-ground-referenced voltage into three currents via three driving current sources operating relative to the virtual ground and the local ground of the core. Negative feedback controls the accuracy of this conversion and provides a way to cancel the effects of the distribution resistance. The current is sourced across the voltage domains between the virtual ground and the VSS, which is the IC ground. An I*R drop across a resistor converts the current to a voltage referenced to VSS at the output.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventor: Todd M. Rasmus
  • Patent number: 7884591
    Abstract: A nonlinear PWM controller for switching power supplies.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: February 8, 2011
    Assignee: L&L Engineering LLC
    Inventors: Paul Latham, John C. Canfield
  • Patent number: 7885088
    Abstract: A method is provided for controlling a converter of the multiphase interleaving type. According to the method, there is detected when a change of the load applied to an output terminal of the converter occurs. All the phases of the converter are simultaneously turned on, and a driving interleaving phase shift is recovered to restart a normal operation of the converter. A controller for carrying out such a method is also provided.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: February 8, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Osvaldo Zambetti, Alessandro Zafarana
  • Patent number: 7884587
    Abstract: A charging unit charges a capacitor that is configured to be charged and discharged to drive a load. A switching unit switches on and off between the capacitor and the charging unit. A delay control unit delays an output of a switching control signal for controlling the switching unit until an output voltage of the charging unit exceeds a voltage of the capacitor, and outputs a delayed switching control signal. An output unit receives the delayed switching control signal from the delay control unit, and outputs the delayed switching control signal to the switching unit so that the charging unit charges the capacitor.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: February 8, 2011
    Assignee: Ricoh Company, Limited
    Inventors: Masae Sugawara, Yuta Nomura
  • Patent number: 7881080
    Abstract: An apparatus and method for controlling an inverter capable of enhancing reliability of current measurement by ensuring an optimal time for which effective voltage vectors are applied to detect a three-phase current according to a phase current and sizes of the effective voltage vectors, the apparatus comprising a space voltage modulator that generates and outputs effective voltage vectors based upon a voltage command value, and a low modulation determiner that determines whether the effective voltage vectors are located within a low modulation region, and outputs a low modulation switching control signal or a normal modulation switching control signal according to the determination.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: February 1, 2011
    Assignee: LG Electronics Inc.
    Inventors: Sung-Min Park, Tae-Kyung Kim
  • Patent number: 7880531
    Abstract: Apparatuses, systems, and methods are disclosed for generating, regulating, and modifying various voltage levels on a semiconductor device using a current mirroring digital-to-analog voltage regulator. The voltage regulator operates by mirroring a reference current onto a selectable current level and controlling the selectable current level with a digital input to a plurality of switched CMOS devices connected in parallel. The switched CMOS devices generate the selectable current level responsive to the digital input and proportional to the reference current. The selectable current level is combined with an output of a voltage divider to generate a monitor signal. The monitor signal is compared to a reference voltage and the results of the comparison controls a charge pump to generate a pumped voltage. The pumped voltage is fed back to the voltage divider, which includes a feedback resistor and a reference resistor connected in series between the pumped voltage and ground.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: February 1, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jae Kwan Park
  • Patent number: 7880451
    Abstract: Techniques are disclosed to control a power converter with multiple output voltages. One example regulated power converter includes a an energy transfer element coupled between a power converter input and first and second power converter outputs. A switch is coupled between the power converter input and the energy transfer element such that switching of the switch causes a first output voltage to be generated at the first power converter output and a second output voltage to be generated at the second power converter output. A current in the energy transfer element is coupled to increase when a voltage across the energy transfer element is a difference between an input voltage at the power converter input and the first output voltage. The current in the energy transfer element is coupled to decrease when the voltage across the energy transfer element is a sum of the first and second output voltages.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 1, 2011
    Assignee: Power Integrations, Inc.
    Inventor: Arthur B. Odell
  • Patent number: 7880450
    Abstract: A switching power supply includes: a first switch provided between one end of a DC power supply and one end of a load; a second switch provided between a node of the first switch located on a load side and another end of the DC power supply; a capacitor provided between the second switch and the another end of the DC power supply; a third switch provided between a node of the first switch located on a DC power supply side and a node between the second switch and the capacitor; and a delay circuit that is provided between the third switch and the node between the second switch and the capacitor and delays a current for charging the capacitor, wherein the second switch is turned on in a period during which the first switch is kept on.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: February 1, 2011
    Assignee: Taiyo Yuden Mobile Technology Co., Ltd.
    Inventors: Yu Yonezawa, Naoyuki Mishima
  • Patent number: 7881078
    Abstract: A device for transmitting electric power between alternating voltage networks includes converters interconnected by direct current lines and provided each with several six-pulse conversion bridges. The six-pulse conversion bridges of one same converter are capable of being connected to an alternating voltage network associated with the converters via inductances differently phase-shifted. A control unit is provided to energize the valves of the six-pulse conversion bridges. The device is more economical and the converters are interconnected by a plurality of direct current circuits, each direct current circuit being galvanically separated from at least an alternating voltage network.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: February 1, 2011
    Assignee: Siemens AG
    Inventors: Marcos Pereira, Kadry Sadek
  • Patent number: 7880530
    Abstract: A power supply circuit which boosts a given voltage to generate one or more power supply voltages includes a charge-pump control circuit including switching elements for generating a boost voltage by a charge-pump operation using charge stored in a flying capacitor, a soft-start circuit which prevents a rush current toward the flying capacitor, and a power supply generation circuit which is connected with a stabilization capacitor and generates a power supply voltage using the boost voltage as a power supply. After the power supply generation circuit has been turned ON in a state in which the charge-pump control circuit generates the boost voltage by the charge-pump operation, the switching elements are turned OFF, and the soft-start circuit generates the boost voltage by a charge-pump operation.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: February 1, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Hisanobu Ishiyama
  • Patent number: 7880088
    Abstract: A bus system is disclosed for use with switching devices, such as power electronic devices. The system includes generally parallel bus elements that define electrical reference planes, such as for a dc bus. The bus elements are separated from one another by insulative layers, with additional insulative layers being available for separating the system from other circuit components. Portions of the bus elements are extended or exposed to permit connection to the circuit elements, including packaged switching circuits and energy storage or filtering circuits. The bus system may be conformed to a variety of geometric configurations, and substantially reduces parasitic inductance and total loop inductance in the resulting circuitry.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: February 1, 2011
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Lawrence D. Radosevich, Steven C. Kaishian, Daniel G. Kannenberg, Timothy A. Roebke, Andreas A. Meyer, Dennis L. Kehl, Lee A. Gettelfinger