Patents Examined by Benjamin Kendall
  • Patent number: 11959174
    Abstract: Embodiments described herein relate to magnetic and electromagnetic systems and a method for controlling the density profile of plasma generated in a process volume of a PECVD chamber to affect deposition profile of a film on a substrate and/or facilitate chamber cleaning after processing. In one embodiment, a system is disclosed that includes a rotational magnetic housing disposed about an exterior sidewall of a chamber. The rotational magnetic housing includes a plurality of magnets coupled to a sleeve that are configured to travel in a circular path when the rotational magnetic housing is rotated around the chamber, and a plurality of shunt doors movably disposed between the chamber and the sleeve, wherein each of the shunt doors are configured to move relative to the magnets.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kallol Bera, Sathya Swaroop Ganta, Timothy Joseph Franklin, Kaushik Alayavalli, Akshay Dhanakshirur, Stephen C. Garner, Bhaskar Kumar
  • Patent number: 11908728
    Abstract: Techniques herein include a process chamber for depositing thin films to backside surfaces of wafers to reduce wafer bowing and distortion. A substrate support provides an annular perimeter seal around the bottom and/or side of the wafer which allows the majority of the substrate backside to be exposed to a process environment. A supported wafer separates the chamber into lower and upper chambers that provide different process environments. The lower section of the processing chamber includes deposition hardware configured to apply and remove thin films. The upper section can remain a chemically inert environment, protecting the existing features on the top surface of the wafer. Multiple exhausts and differential pressures are used to prevent deposition gasses from accessing the working surface of a wafer.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: February 20, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Ronald Nasman, Gerrit J. Leusink, Rodney L. Robison, Hoyoung Kang, Daniel Fulford
  • Patent number: 11908664
    Abstract: A plasma processing apparatus includes a stage for supporting a target object in a chamber defined by a chamber body. The stage includes a lower electrode, an electrostatic chuck provided on the lower electrode, heaters provided in the electrostatic chuck, and terminals electrically connected to the heaters. A conductor pipe electrically connects a high frequency power supply and the lower electrode and extends from the lower electrode to the outside of the chamber body. Power supply lines supply power from a heater controller to the heaters. Filters partially forming the power supply lines prevent the inflow of high frequency power from the heaters to the heater controller. The power supply lines include wirings which respectively connect the terminals and the filters and extend to the outside of the chamber body through an inner bore of the conductor pipe.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: February 20, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Naohiko Okunishi, Nozomu Nagashima, Tomoyuki Takahashi
  • Patent number: 11891695
    Abstract: The invention provides a vibrating deposition device, which includes a vacuum chamber, a fixed rod and a powder tank. The vacuum chamber includes an inner side surface, and a plurality of bulges and notches are arranged on the inner side surface. The fixed rod and the powder tank are arranged in an accommodating space of the vacuum chamber, wherein the powder tank is used for accommodating powders and contacts the inner side surface of the vacuum chamber through a protruding unit. When the vacuum chamber rotates, the protruding unit will be displaced between the bulge and the notch, and the powder tank will be displaced up and down relative to the vacuum chamber to vibrate powders in the powder tank, so that a uniform film will be formed on the surface of powders.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: February 6, 2024
    Assignee: SKY TECH INC.
    Inventor: Jing-Cheng Lin
  • Patent number: 11885003
    Abstract: A rotational drive device includes a first rotator configured to rotate with respect to a stator, a plurality of second rotators configured to rotate with respect to the first rotator, a plurality of drivers configured to rotatably drive the respective second rotators, and a plurality of driver controllers configured to rotate integrally with the first rotator and to control rotation of the drivers, respectively, the respective driver controllers being connected to one another by a communication network.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: January 30, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Junnosuke Taguchi, Yasutomo Kimura
  • Patent number: 11881379
    Abstract: In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: January 23, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Kazuhide Hasebe, Shigeru Nakajima, Jun Ogawa, Hiroki Murakami
  • Patent number: 11881385
    Abstract: Apparatus and methods use a unique process kit to protect a processing volume of a process chamber. The process kit includes a shield with a frame configured to be insertable into a shield and a foil liner composed of a metallic material that is attachable to the frame at specific points. The specific attachment points are spaced apart to produce an amount of flexibility based on a malleability of the metallic material. The amount of flexibility ranges from approximately 2.5 to approximately 4.5.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 23, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yueh Sheng Ow, Yuichi Wada, Junqi Wei, Kang Zhang, Ananthkrishna Jupudi, Sarath Babu, Kok Seong Teo, Kok Wei Tan
  • Patent number: 11869780
    Abstract: A substrate liquid processing apparatus includes a processing liquid storage unit configured to store a processing liquid therein; a processing liquid drain unit configured to drain the processing liquid from the processing liquid storage unit; and a control unit. The control unit performs a first control in a constant concentration mode in which a concentration of the processing liquid in the processing liquid storage unit is regulated to a predetermined set concentration and a second control in a concentration changing mode in which the concentration of the processing liquid is changed. In the second control, a set concentration after concentration change is compared with a set concentration before the concentration change, and when the set concentration after the concentration change is lower, the control unit controls the processing liquid drain unit to start draining of the processing liquid.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: January 9, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takahiro Kawazu, Takafumi Tsuchiya, Hideaki Sato, Hidemasa Aratake, Osamu Kuroda, Takashi Nagai, Jiro Harada
  • Patent number: 11869750
    Abstract: A plasma processing apparatus according to an exemplary embodiment includes a chamber, a member, and a heater. Plasma is generated in an internal space of the chamber. The member is partially located in the internal space of the chamber. The heater is configured to heat the member. The member extends outward from the internal space of the chamber and is exposed to a space outside the chamber.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 9, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yusuke Hayasaka, Takehiro Tanikawa, Shuhei Yamabe, Yuki Machida, Jun Young Chung
  • Patent number: 11862434
    Abstract: Embodiments of the inventive concept provide a substrate processing apparatus. The substrate treating apparatus comprises a process treating unit providing a treating space performed treating the substrate; a plasma generating unit generating the plasma discharging a process gas, and supplying the plasma to the treating space. The plasma generating unit provides a plasma chamber having a generating space of the plasma; an antenna wound to surround the plasma chamber outside the plasma chamber; a first coating film covering inside walls of the plasma chamber and comprising yttrium fluoride (YF3).
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: January 2, 2024
    Assignee: PSK INC.
    Inventors: Young Jae Ma, Sung Jin Yoon, Hyo Jeong Seo, Jong Woo Park
  • Patent number: 11862435
    Abstract: A system includes an electrode. The electrode includes a showerhead having a first stem portion and a head portion. A plurality of dielectric layers is vertically stacked between the electrode and a first surface of a conducting structure. The plurality of dielectric layers includes M dielectric layers arranged adjacent to the head portion and P dielectric portions arranged around the first stem portion. The plurality of dielectric layers defines a first gap between the electrode and one of the plurality of dielectric layers, a second gap between adjacent ones of the plurality of dielectric layers, and a third gap between a last one of the plurality of dielectric layers and the first surface. A number of the plurality of dielectric layers and sizes of the first gap, the second gap, and the third gap are selected to prevent parasitic plasma between the first surface and the electrode.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Douglas Keil, Edward J. Augustyniak, Karl Frederick Leeser, Mohamed Sabri
  • Patent number: 11854771
    Abstract: Embodiments of the present disclosure include methods and apparatus for depositing a plurality of layers on a large area substrate. In one embodiment, a processing chamber for plasma deposition is provided. The processing chamber includes a showerhead and a substrate support assembly. The showerhead is coupled to an RF power source and a ground and includes a plurality of perforated gas diffusion members. A plurality of plasma applicators is disposed within the showerhead, wherein one plasma applicator of the plurality of plasma applicators corresponds to one of the plurality of perforated gas diffusion members. Further, a DC bias power source is coupled to a substrate support assembly.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: December 26, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh Kao, Tae Kyung Won, Carl A. Sorensen, Sanjay D. Yadav, Young Dong Lee, Shinichi Kurita, Soo Young Choi
  • Patent number: 11854775
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated optical measurement system that enable microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond while measuring the local surface properties of the component while being grown. Related methods include deposition of the component, measurement of the local surface properties, and/or alteration of operating conditions during deposition in response to the local surface properties. As described in more detail below, the MPCR apparatus includes one or more electrically conductive, optically transparent regions forming part of the external boundary of its microwave chamber, thus permitting external optical interrogation of internal reactor conditions during deposition while providing a desired electrical microwave chamber to maintain selected microwave excitation modes therein.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 26, 2023
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Timothy A. Grotjohn, Jes Asmussen
  • Patent number: 11804368
    Abstract: A plasma processing apparatus includes: a plasma processing chamber; a substrate support disposed in the plasma processing chamber; an edge ring disposed on the substrate support to surround a substrate on the substrate support; an actuator configured to vertically move the edge ring; a gas supply configured to supply a cleaning gas into the plasma processing chamber; a power source configured to supply a power to the substrate support; and a controller configured to: (a) maintain the edge ring at a first position spaced apart from the substrate support; and (b) supply a power to the substrate support while supplying the cleaning gas into the plasma processing chamber to generate a local plasma in a gap between the edge ring maintained at the first position and the substrate support, thereby cleaning the edge ring and the substrate support.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: October 31, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Chishio Koshimizu
  • Patent number: 11798785
    Abstract: Systems and methods for reverse pulsing are described. One of the systems includes a controller, first and second source radio frequency (RF) generators, and first and second bias RF generators. The controller controls the first source RF generator to generate a first source pulsed signal, and controls the second source RF generator to generate a second source pulsed signal. The system includes a first match circuit that receives the first and second source pulsed signals and combines the first and second source pulsed signals. The controller controls the first bias RF generator to generate a first bias pulsed signal, and controls the second bias RF generator to generate a second bias pulsed signal. The system includes a second match circuit that receives the first and second bias pulsed signals and combines the first and second bias pulsed signals into a combined bias signal.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: October 24, 2023
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Zhongkui Tan, Ying Wu, Qian Fu, Alex Paterson, John Drewery
  • Patent number: 11756771
    Abstract: A tunable upper plasma exclusion zone (PEZ) ring adjusts a distance of plasma during processing in a processing chamber and includes: a lower surface that includes: a horizontal portion; and an upwardly tapered outer portion that is conical and that extends outwardly and upwardly from the horizontal portion at an upward taper angle of about 5° to 50° with respect to the horizontal portion, where an outer diameter of the upwardly tapered outer portion is greater than 300 millimeters (mm), and where an inner diameter where the upwardly tapered outer portion begins to extend upwardly is less than 300 mm. A controller is to, during processing of a 300 mm circular substrate, adjust the distance of plasma for treatment of the 300 mm circular substrate at least one of radially inward and radially outward using the tunable upper PEZ ring.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: September 12, 2023
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jack Chen, Adam Liron, Gregory Sexton
  • Patent number: 11749509
    Abstract: Plasma processing apparatus and methods are disclosed. In one example implementation, a plasma processing apparatus can include a processing chamber. The apparatus can include a pedestal located in the processing chamber configured to support a workpiece during processing. The apparatus can include a dielectric window forming at least a portion of the processing chamber. The apparatus can include an inductive coupling element located proximate the dielectric window. The inductive coupling element can be configured to generate a plasma in the processing chamber when energized with RF energy. The apparatus can include a Faraday shield located between the inductive coupling element and the processing chamber. The apparatus can include at least one temperature control element in thermal communication with the Faraday shield.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: September 5, 2023
    Assignees: BEIJING E-TOWN SEMICONDUCTOR TECHNOLOGY, CO., LTD, MATTSON TECHNOLOGY, INC.
    Inventors: Yorkman Ma, Dixit V. Desai
  • Patent number: 11742188
    Abstract: A substrate processing method is provided. In the method, a process gas is supplied into a chamber. A pressure in the chamber is controlled to a first pressure by evacuating the chamber via a first exhaust line. Then, the pressure in the chamber is controlled to a second pressure that is higher than the first pressure by evacuating the chamber via a second exhaust line while closing the first exhaust line. Next, the pressure in the chamber is controlled to the first pressure by evacuating the chamber via the first exhaust line while closing the second exhaust line.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: August 29, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Kazuyuki Miura, Norihiko Amikura
  • Patent number: 11728142
    Abstract: A surface treatment apparatus and a surface treatment system having the same are disclosed. The surface treatment apparatus includes a process chamber in which the surface treatment process is conducted, a plasma generator for generating process radicals as a plasma state for the surface treatment process, the plasma generator being positioned outside of the process chamber and connected to the process chamber by a supply duct, a heat exchanger arranged on the supply duct and cooling down temperature of the process radicals passing through the supply duct and a flow controller controlling the process radicals to flow out of the process chamber. The flow controller is connected to a discharge duct through which the process radicals are discharged outside the process chamber. The plasma surface treatment process is conducted to the package structure having minute mounting gap without the damages to the IC chip and the board.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: August 15, 2023
    Assignees: SAMSUNG ELECTRONICS CO., LTD., New Power Plasma CO., LTD.
    Inventors: Junyoung Oh, Jaeho Kwak, Boeun Jang, Seokyeon Hwang, Yongseok Seo, Sangsoo Kim, Seunghwan Kim, Jongho Park, Yongkwan Lee, Jongho Lee, Daewook Kim, Wonpil Lee, Changkyu Choi
  • Patent number: 11705314
    Abstract: Provided is a generator including a power amplifier, at least one sampler, an RF output, a signal generator, a controller including a digital control portion and an analogue control portion, an analogue feedback path between the at least one sampler and the controller enabling an analogue signal representation of a signal to be provided to the controller, and a digital feedback path between the at least one sampler and the controller enabling a digital signal representation of the signal to be provided to the controller. The controller is configured to adjust the RF signal at the RF output from a first state into a second state based on the analogue signal representation and/or the digital signal representation.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: July 18, 2023
    Assignee: COMET AG
    Inventors: Anton Labanc, Daniel Gruner, André Grede