Patents Examined by Benny T. Lee
  • Patent number: 10320047
    Abstract: A waveguide interface comprising a support block configured to support a printed circuit board assembly. An interface is coupled to an end portion of the support block and extends from the support block. The interface includes a slot positioned to receive at least a portion of the printed circuit board assembly and one or more holes positioned to receive attachment devices to secure the interface to a waveguide component. The support block and interface are molded as a monolithic device. A method of forming the waveguide interface, a waveguide assembly including the waveguide interface, and a method of making the waveguide assembly including the waveguide interface are also disclosed.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: June 11, 2019
    Assignee: VUBIQ NETWORKS, INC.
    Inventor: Michael Gregory Pettus
  • Patent number: 10320046
    Abstract: Aspects of the subject disclosure may include, for example, a transmission medium for propagating electromagnetic waves. The transmission medium can include a core for propagating electromagnetic waves guided by the core without an electrical return path, a rigid material surrounding the core, wherein an inner surface of the rigid material is separated from an outer surface of the core, and a conductive layer disposed on the rigid material. Other embodiments are disclosed.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: June 11, 2019
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Robert Bennett, Paul Shala Henry, Farhad Barzegar, Irwin Gerszberg, Donald J. Barnickel, Thomas M. Willis, III
  • Patent number: 10320044
    Abstract: The present application provides a dielectric resonator, a dielectric filter, a base station and a method for fabricating the dielectric resonator or the dielectric filter. The dielectric resonator includes: a solid dielectric resonator body, a blind hole located on one side of the solid dielectric resonator body, a metalized layer covering both a surface of the solid dielectric resonator body and a surface of the blind hole, and a demetallized notch located at the metalized layer on the surface of the blind hole. The dielectric resonator provided in the present application can implement tuning of the dielectric resonator, and reduce impact on the resonance frequency of the dielectric resonator after the dielectric resonator is tuned, where the impact caused by that the demetallized notch is covered by a metal material in an assembly process of the dielectric resonator, and signal energy that is leaked from the notch is reduced.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 11, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Bengui Yuan, Qiang Wang
  • Patent number: 10320373
    Abstract: Some embodiments include a high voltage nonlinear transmission line comprising a high voltage input configured to receive electrical pulses having a first peak voltage that is greater than 10 kV; a plurality of circuit elements electrically coupled with ground, each of the plurality of circuit elements includes a nonlinear semiconductor junction capacitance device; a plurality of inductors, at least one of the plurality of inductors is electrically coupled between two circuit elements of the plurality of circuit elements; and a high voltage output providing a high voltage output signal that oscillates at a frequency greater than 100 MHz about a voltage greater than 10 kV.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: June 11, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller
  • Patent number: 10312564
    Abstract: A filter is disposed on a base board. The filter includes a first portion, a second portion, a ground portion, a first coupling portion and a second coupling portion. The first portion is disposed on a first layer in the base board to input signals. The second portion is disposed on the first layer to output signals. The ground portion is disposed on a second layer in the base board. The first coupling portion is disposed on the first layer. The first coupling portion is electrically coupled to the first portion and the second portion. The first coupling portion is electrically coupled to the ground portion through via holes. The second coupling portion is disposed on the first layer. The second coupling portion is electrically coupled to the first portion and the second portion. The second coupling portion is electrically coupled to the ground portion through the via holes.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: June 4, 2019
    Assignee: AMBIT MICROSYSTEMS (SHANGHAI) LTD.
    Inventors: Ming-Hsien Hsu, Shii-Rong Den
  • Patent number: 10302676
    Abstract: A flexible resistive tip cable assembly includes a probe Radio Frequency (RF) connector structured to receive a RF differential signal and a testing connection assembly. A coaxial cable is structured to conduct the RF differential signal between the probe RF connector and the testing connection assembly. The coaxial cable includes a cable for conducting the differential signal, and a plurality of magnetic elements positioned along a length of the cable and structured to isolate the differential signal from common mode interference. The magnetic elements are separated from adjacent magnetic elements by a gap with elastomeric elements is positioned in each gap to provide cable flexibility. The assembly may also include an Electrically Erasable Programmable Read Only Memory (EEPROM) loaded with an attenuation associated with the flexible resistive tip cable assembly for use in signal testing by a device coupled to the testing connection assembly.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: May 28, 2019
    Assignee: Tektronix, Inc.
    Inventors: Michael J. Mende, Gary W. Reed, James D. Pileggi, Karl A. Rinder, Richard A. Booman, Martin Van Pelt
  • Patent number: 10305447
    Abstract: An acoustic filter comprises a piezoelectric layer; an acoustic resonator structure monolithically disposed on the piezoelectric layer, the acoustic resonator structure including an arrangement of planar interdigitated resonator fingers; and a lumped capacitive structure monolithically disposed on the piezoelectric layer and being electrically coupled to the acoustic resonator structure, the lumped capacitive structure including an arrangement of planar interdigitated capacitive fingers, each of at least one of the interdigitated capacitive fingers having an edge that is entirely continuous.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: May 28, 2019
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Gregory L. Hey-Shipton
  • Patent number: 10298197
    Abstract: A bulk acoustic wave resonator includes: a substrate; a cavity forming layer disposed on the substrate so as to form a cavity; a lower electrode disposed on the cavity; a piezoelectric layer disposed on the lower electrode; an upper electrode disposed on the piezoelectric layer; and a temperature compensation layer disposed below the lower electrode and in the cavity portion.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: May 21, 2019
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Moon Chul Lee, Jae Chang Lee, Chang Hyun Lim, Tae Hun Lee, Tae Kyung Lee, Tae Yoon Kim
  • Patent number: 10290914
    Abstract: The present disclosure provides a waveguide apparatus for receiving wireless signals. The waveguide apparatus includes a first waveguide member and a second waveguide member attached to the first waveguide member to form a waveguide having an aperture for receiving wireless signals. The first waveguide member includes a first wall and a second wall forming a first corner of the aperture, and the second waveguide member includes a third wall and a fourth wall forming a third corner of the aperture. After the first waveguide member is attached to the second waveguide member, the second wall and the third wall form a second corner of the aperture, and the fourth wall and the first wall form a fourth corner of the aperture.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: May 14, 2019
    Assignee: MICROELECTRONICS TECHNOLOGY, INC
    Inventors: Hui-Na Liu, Chang-Chun Chen, Wei Huang Chen
  • Patent number: 10290916
    Abstract: A microwave frequency magnetic field manipulation system 10 comprises a re-entrant microwave cavity 12 having a substantially continuous and closed internal surface 14 with at least two opposite sides 16 and 18. Two or more posts, P1, P2, . . . Pn (hereinafter referred to in general as “posts P”) are provided in the cavity 12. The posts P are in physical and more particularly electrical contact with one of the sides 16. Respective gaps G are or can be formed between free ends of the posts P and the side 18. The system 10 also has a signal source 20 coupled to the cavity 12 for supplying microwaves. The source 20 supplies microwave signals at frequencies that facilitate the generation of magnetic fields in opposite directions about at least two mutually adjacent posts P. Accordingly the magnetic field is reinforced in a common region 22 between the mutually adjacent posts P.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: May 14, 2019
    Assignee: The University of Western Australia
    Inventors: Michael Edmund Tobar, Maxim Goryachev
  • Patent number: 10290913
    Abstract: Provided is a high-frequency wave feeding system capable of feeding microwaves with little loss and without addition of resistive noise, using a simple deployment mechanism. The system includes a first waveguide fixed to a first structure of a deployment structure and having a choke flange, and a second waveguide fixed to a second structure of the deployment structure and having a cover flange. When the deployment structure is in a deployed state, the choke flange and the cover flange face each other so that high-frequency waves are fed to the deployment structure via the first and second waveguides.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: May 14, 2019
    Assignee: JAPAN AEROSPACE EXPLORATION AGENCY
    Inventors: Hirobumi Saito, Atsushi Tomiki
  • Patent number: 10291080
    Abstract: An electric power transmission device includes a first power transmitting electrode, a second power transmitting electrode, a conductive first shield disposed between the first power transmitting electrode and the second power transmitting electrode, a conductive second shield that covers at least one of a first gap between the first power transmitting electrode and the first shield or a second gap between the second power transmitting electrode and the first shield, and a conductive third shield that covers at least one of a plurality of gaps between a plurality of divided portions of the second shield.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: May 14, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroshi Yamamoto, Hiromu Matsumoto, Hiroshi Kanno
  • Patent number: 10290915
    Abstract: A waveguide launch includes a first substrate having a first electrically insulating layer having first and second faces, an internal waveguide extending through the first electrically insulating layer, the internal waveguide being defined by an electrically conductive internal waveguide side wall, and, first and second electrically conductive layers in electrical contact with the internal waveguide side wall, and an electrically conductive probe launch. The waveguide launch also includes; a second substrate having a second electrically insulating layer having third and fourth faces, a backshort recess arranged within the second electrically insulating layer, a third electrically conductive layer on the third face, and, an interconnection waveguide extending between the first and third faces.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 14, 2019
    Assignee: Filtronic Broadband Limited
    Inventors: Gary Flatters, Richard Smith
  • Patent number: 10291206
    Abstract: An acoustic wave device includes: a piezoelectric thin film resonator that is connected between a first node and a second node; and a resonant circuit that is connected in parallel with the piezoelectric thin film resonator between the first node and the second node, and has a resonant frequency f0 that meets a condition of 2×fa×0.92?f0 where fa represents an antiresonant frequency of the piezoelectric thin film resonator.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: May 14, 2019
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Taisei Irieda, Yoshio Satoh, Tokihiro Nishihara, Shinji Taniguchi
  • Patent number: 10291193
    Abstract: A system having a set of power amplifiers each having a primary inductive structure configured to provide an output signal. A secondary inductive structure is configured to inductively couple to each of the primary inductive structures. A transmission line is provided with a signal trace and a ground trace. The signal trace of the transmission line is connected to a first end of the secondary inductive structure. A return path from a second end of the secondary inductive structure is coupled via a resonant network to the ground trace of the transmission line, in which the return path is spaced away from the secondary inductive structure to minimize inductive coupling to the primary structures.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: May 14, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnanshu Dandu, Brian Paul Ginsburg
  • Patent number: 10284162
    Abstract: A filter circuit is provided having multipath interference mitigation. The filter includes a signal path extending from an input to an output. The signal path includes a conductive path and a ground. A pass band filter is disposed along the signal path between the input and the output. The pass band filter passes a first frequency spectrum in a provider bandwidth, and attenuates a second frequency spectrum in a home network bandwidth. The filter circuit further includes a multipath interference mitigation leg operatively branched from the signal path. The multipath interference mitigation leg increases a return loss of the home network bandwidth. A frequency response of the filter circuit is characterized by an insertion loss characteristic between the input and the output being less than 3 dB in the provider bandwidth, and more than 20 dB in the home network bandwidth.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: May 7, 2019
    Assignee: PPC BROADBAND, INC.
    Inventors: Erdogan Alkan, Raymond W. Palinkas
  • Patent number: 10284181
    Abstract: A variable capacitor includes: capacitors connected in series between first and second signal terminals, capacitances of the capacitors varying in accordance with variable voltage applied to a variable terminal; a first resistor connected between a first node between adjacent capacitors of the capacitors and the variable terminal, a second resistor connected between a second node between adjacent capacitors of the capacitors and a fixed terminal applied with fixed voltage, and a third resistor connected between a third node and the fixed terminal, the third node being located between the first and/or second signal terminal and a capacitor located closest to the first and/or signal terminal among the capacitors, wherein a resistance of the second resistor is less than 1 and ½ or greater with respect to a resistance of the third resistor, and the resistance of the second resistor is not equal to a resistance of the first resistor.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: May 7, 2019
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Masashi Natsume, Tomokazu Ikenaga
  • Patent number: 10284178
    Abstract: Embodiments of radio frequency (RF) filtering circuitry are disclosed. In one embodiment, the RF filtering circuitry includes a common port, a second port, a third port, a first RF filter path, and a second RF filter path. The first RF filter path is connected between the common port and the second port and comprises a first pair of resonators and a first acoustic wave resonator. One of the first pair of resonators also includes a second acoustic wave resonator. The second RF filter path is connected between the common port and the third port. The second RF filter path includes a second pair of resonators. The first and second acoustic wave resonators of the first RF filter path increase roll-off greatly with respect to just an LC filter, and thereby allow for an increase out-of-band rejection at high frequency ranges.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: May 7, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, George Maxim, Marcus Granger-Jones, Baker Scott
  • Patent number: 10277198
    Abstract: The present disclosure relates to a high power and low loss acoustic filter that includes a first node, a second node, a first power bypass path, and a first acoustic resonator (AR) path. The first power bypass path extends between the first node and the second node. The first AR path also extends between the first node and the second node, is in parallel with the first power bypass path, and includes at least one first acoustic resonator that form an acoustic resonator network. Herein, the first AR path has a notch filter response. The first power bypass path and the first AR path form a first filter cell that has a band-pass filter response.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: April 30, 2019
    Assignee: Qorvo US, Inc.
    Inventor: Kelly M. Lear
  • Patent number: 10277195
    Abstract: An electro-acoustic transducer and an electro-acoustic component including an electro-acoustic transducer are disclosed. In an embodiment the transducer includes a first and a second bus bar, a plurality of electrode fingers and a plurality of two or more sub tracks, wherein each electrode finger is electrically connected to one of the bus bars, wherein each sub track extends along a longitudinal direction, wherein all sub tracks are arranged one next to another in a transversal direction, wherein at least a first of the sub tracks includes segments of the electrode fingers and has an associated sub track with segments of the electrode fingers, wherein the segments of the electrode fingers of the first sub track are shifted by a distance S=?/2 along the longitudinal direction relative to the segments of the electrode fingers of the associated sub track, and wherein ? is an acoustic wavelength.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: April 30, 2019
    Assignee: SnapTrack, Inc.
    Inventors: Xian Yi Li, Stéphane Chamaly, Sok Fong Koh