Abstract: A 1:4 reciprocal compact E/H hybrid combiner-divider, includes at least one primary waveguide and two secondary waveguides forming a one-piece structure configured such that the primary guide has a first end forming an input/output port and a second end defining an aperture and that each secondary guide has two ends forming two input/output ports, and a side aperture formed on one of the small side faces. The secondary guides are arranged so as to have a common side wall. They are arranged facing the primary waveguide such that the side apertures are situated facing the aperture formed by one of the ends of the primary waveguide and that the common wall is aligned with the central axis of the aperture of the primary waveguide.
Type:
Grant
Filed:
December 3, 2019
Date of Patent:
November 19, 2024
Assignee:
THALES
Inventors:
Pierre Bosshard, Fabien Nusbaum, Nicolas Ferrando
Abstract: Embodiments may relate an electronic device that includes a first server blade and a second server blade coupled with a chassis. The first and second server blades may include respective microelectronic packages. The electronic device may further include a waveguide coupled to the first and second server blades such that their respective microelectronic packages are communicatively coupled by the waveguide. Other embodiments may be described or claimed.
Type:
Grant
Filed:
June 8, 2023
Date of Patent:
November 19, 2024
Assignee:
Intel Corporation
Inventors:
Telesphor Kamgaing, Johanna M. Swan, Georgios Dogiamis, Henning Braunisch, Adel A. Elsherbini, Aleksandar Aleksov, Richard Dischler
Abstract: A phase shifter includes a printed circuit board and a trace located on the printed circuit board that is configured to transmit signals. The printed circuit board includes a first part covered by the trace and a second part not covered by the trace, where the second part includes at least one hollowed out area near the trace.
Type:
Grant
Filed:
September 15, 2022
Date of Patent:
November 19, 2024
Assignee:
Outdoor Wireless Networks LLC
Inventors:
Yan Wang, Xun Zhang, Hangsheng Wen, Long Shan
Abstract: A waveguide assembly, comprising an electrical circuit assembly, a dielectric waveguide with a longitudinal axis (A), and a waveguide transition lying therebetween for transmitting an electromagnetic wave between the electrical circuit assembly and the dielectric waveguide. The waveguide transition has a first electrically conductive plate and a second electrically conductive plate which are arranged between the electrical circuit assembly and the dielectric waveguide in an offset manner to each other in the direction of the longitudinal axis (A) of the dielectric waveguide.
Type:
Grant
Filed:
January 16, 2020
Date of Patent:
November 19, 2024
Assignee:
Rosenberger Hochfrequenztechnik GmbH & Co. KG
Inventors:
Simon Karau, Andre Meyer, Martin Schneider
Abstract: A transition unit of a radio frequency device provides a transition between a planar differential pair transmission line and a hollow radio frequency waveguide. A substrate layer arrangement with a planar differential pair transmission line is arranged on one or more surfaces of at least one substrate layer. An end section of the transmission line is configured as a radio frequency signal emission pattern. The transition unit has an end section of a waveguide for electromagnetic waves that is attached to the substrate layer arrangement and superposes the radio frequency signal emission pattern. The waveguide is directed perpendicular to the substrate layer arrangement. An open end of the end section of the waveguide is attached to a first outer surface or a second outer surface of the substrate layer arrangement. Opposite to the end section a back cavity is attached with an open end towards the substrate layer arrangement.
Abstract: A cable is provided which has a dielectric medium forming a chamber which can also be filled by the dielectric medium. The cable additionally has a first dielectric waveguide element and a second dielectric waveguide element. The first dielectric waveguide element is arranged at a distance from the second dielectric waveguide element. The first dielectric waveguide element runs along a longitudinal direction of the cable through the chamber formed by the dielectric medium, and the second dielectric waveguide element runs along the longitudinal direction of the cable through the chamber formed by the dielectric medium. The polarization direction of the first dielectric waveguide element differs from the preferred polarization direction of the second dielectric waveguide element.
Type:
Grant
Filed:
May 11, 2020
Date of Patent:
November 19, 2024
Assignee:
LEONI KABEL GMBH
Inventors:
Erwin Köppendörfer, Thorsten Fink, Dominik Dorner, Felix Distler
Abstract: A pseudo coaxial line is connected to a first coplanar line at a first connecting portion and connected to a second coplanar line at a second connecting portion. The first coplanar line and the second coplanar line are, for example, differential coplanar lines. Also, a back surface concave portion in which the second connecting portion of the pseudo coaxial line is exposed is provided. The back surface concave portion is formed into an almost semicircular shape, an almost semielliptical shape, or a rectangular shape in a planar view.
Type:
Grant
Filed:
July 22, 2020
Date of Patent:
November 12, 2024
Assignee:
Nippon Telegraph and Telephone Corporation
Abstract: A radio frequency signal coupler includes an input port, an output port, a main transmission line coupled between the input port and the output port, and a coupled transmission line electromagnetically coupled to the main transmission line. The coupled transmission line includes a first transmission line, a second transmission line, and a switch configured to couple the first and second transmission lines during a first mode of operation and to decouple the first and second transmission lines during a second mode of operation. The radio frequency couple can be used in a front end module of a communications device, such as a mobile phone.
Abstract: An electronic device comprises a waveguide block defining a cavity therein. The device has a monolithic microwave or millimetre-wave integrated circuit device positioned at least partially in the cavity. The integrated circuit device comprises a dielectric substrate and a metal foil layer that extends outwards from an external edge of the dielectric substrate. The metal foil layer and the dielectric substrate define a through hole, wherein a first edge of the through hole is an edge of the metal foil layer and defines an end of the elongate waveguide channel, and wherein the metal foil layer at least partly determines both a length and a width of an elongate waveguide channel within the cavity.
Abstract: A cable television (CATV) multi-tap system includes a tap housing. The system also includes a face plate including one or more subscriber ports. The system also includes a circuit board positioned within the tap housing and coupled to the face plate. The system also includes an access cover coupled to the tap housing. The access cover is configured to be removed from the tap housing to allow access to the circuit board without removing the face plate or the circuit board from the tap housing.
Type:
Grant
Filed:
February 23, 2021
Date of Patent:
October 29, 2024
Assignee:
PPC BROADBAND, INC.
Inventors:
Douglas Jones, Noah Montena, Andriy Lozhko
Abstract: A multiband antenna feed, an antenna incorporating the multiband antenna feed and a method are disclosed. An apparatus, comprises: a first port which may be configured to convey a first signal at a first frequency. A second port may configured to convey a second signal at a second frequency. The second frequency may be higher than the first frequency. A third port may be configured to convey the first signal and the second signal with a feed for a multiband antenna. The third port may have an inner waveguide and a coaxial waveguide. A first network may couple the first port with the coaxial waveguide and may be configured to propagate the first signal between the first port and the coaxial waveguide. A second network may couple the second port with the inner waveguide and may be configured to propagate the second signal between the second port and the inner waveguide.
Abstract: Provided are a phase shifter, a preparation method thereof, and an antenna. The phase shifter includes at least one phase shifting unit, and the phase shifting unit includes a microstrip line, a photo-dielectric layer, a ground electrode, and at least one light guiding structure; the microstrip line is located on a side of the photo-dielectric layer, and the ground electrode is located on a side of the photo-dielectric layer facing away from the microstrip line; the light-guiding structure at least partially overlaps the photo-dielectric layer, and the light-guiding structure is configured to guide light into the photo-dielectric layer.
Abstract: A transmission line includes a first structure including a first insulating substrate and a ground conductor on the first insulating substrate, a second structure including a second insulating substrate and a signal line, ground conductors, and interlayer connection conductors on or in the second insulating substrate, a third insulating substrate including openings, and metal bonding materials that bond the structure and the structure to each other with the third insulating substrate interposed therebetween. The first and second insulating substrates are stacked with the third insulating substrate interposed therebetween to define hollow portions. The signal line and the ground conductor partially face each other across the hollow portions in a bonding direction. The ground conductor includes openings in regions that overlap the signal line but do not overlap the hollow portions when looking in plan view in the bonding direction.
Abstract: A power switch including input and output lines of characteristic impedance Z0, and a switching area connected serially between the input and output lines, the switching area being formed by N (integer?2) parallel conducting branches and i belonging to {1, . . . , N}, each conducting branch having, from input to output lines of the switch, an input line portion with characteristic impedance Zbei in series with a switching circuit in series with an output line portion with characteristic impedance Zbsi, the switching circuit configured, in a first state, to block passage of a signal between the input and output line portions of the conducting branch and, in a second state, to transmit a signal between the input line portion and the output line portion of the conducting branch with a maximum reflection coefficient of 0.316, each of the characteristic impedances Zbei and Zbsi ranging from 0.75*N*Z0 to 1.35*N*Z0.
Abstract: A high-frequency module including a transmission line for a high-frequency signal and a waveguide conversion structure, capable of reducing the size thereof, and a method for manufacturing such a high-frequency module are provided. A high-frequency module includes a core material in which a first dielectric layer is provided between a first conductive layer and a second conductive layer, a laminated filter in which a plurality of core materials and dielectric layers are alternately laminated, and a through hole pierces therethrough from a lowermost conductive layer provided so as to be in contact with the lowermost dielectric layer to the uppermost first conductive layer, a first surface dielectric layer provided above the laminated filter, and a first surface conductive layer provided above the first surface dielectric layer, the first surface conductive layer including a transmission line for a high-frequency signal and a ground GND.
Abstract: A diplexer for an antenna comprises a first waveguide operative in a first frequency range, a second waveguide operative in a second higher frequency range, a third waveguide operative in the first frequency range, a transmission device including at least three electric conductors, in which at least one of (i) or (ii) is met: (i) the transmission device is operative to receive electromagnetic radiations with at least one type of polarization and in the first frequency range from the third waveguide and to transmit electromagnetic radiations with the type of polarization and in the first frequency range to the first waveguide; (ii) the transmission device is operative to receive electromagnetic radiations with at least one type of polarization and in the first frequency range from the first waveguide and to transmit electromagnetic radiations with the type of polarization and in the first frequency range to the third waveguide.
Abstract: A waveguide launch system configured for translating radio frequency signal waves is provided. The system comprises a first printed circuit board lamina comprising an electrically conductive ground member and configured for attachment of a separate waveguide element, having a first cross-section area, thereto. A second printed circuit board lamina comprising an electrically conductive backshort cover configured to reflect the RF signal waves is bonded to a first printed circuit board lamina. An electrically conductive barrier arrangement extends through the second printed circuit board lamina. The electrically conductive barrier arrangement and the electrically conductive backshort cover form an integrated electrically conductive backshort volume of an integrated backshort having a second cross-section area. The second cross-section area is smaller than the first cross-section area.