Patents Examined by Bernard Pianalto
  • Patent number: 6723388
    Abstract: This invention comprises methods for making nanostructured and nanoporous thin film structures of various compositions. These films can be directly patterned. In these methods, precursor films are deposited on a surface and different components of the precursor film are reacted under selected conditions, forming a nanostructured or nanoporous film. Such films can be used in a variety of applications, for example, low k dielectrics, sensors, catalysts, conductors or magnetic films. Nanostructured films can be created: (1) using one precursor component and two reactions, (2) using two or more components based on differential rates of photochemical conversion, (3) using two precursors based on the thermal sensitivity of one precursor and the photochemical sensitivity of the other, and (4) by photochemical reaction of a precursor film and selected removal of a largely unreacted component from the film.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 20, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Leo G. Svendsen, Shyama P. Mukheriee, Paul J. Roman, Jr., Ross H. Hill, Harold O. Madsen, Xin Zhang, Donna Hohertz
  • Patent number: 6723377
    Abstract: The present invention relates to methods of incorporating additives into a thin film formed on a substrate comprising: forming an impregnatable thin film on at least one face of a substrate; depositing an impregnation composition comprising at least one additive incorporated in an appropriate diluent medium on said impregnatable thin film by spin coating; diffusing the impregnation composition within said impregnatable thin film and; treating the substrate coated with the impregnated thin film to at least partially remove the diluent medium from the impregnated thin film. The invention also relates to the application of such methods to the production of optical lenses, including in the coloring of such lenses.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: April 20, 2004
    Assignee: Essilor International Compagnie Generale d'Optique
    Inventors: Yves Leclaire, Jean-Paul Cano
  • Patent number: 6723440
    Abstract: The process comprises, (a) adding to a polymerizable composition containing a component A comprising at least one silane compound containing at least one epoxy group and at least two alkoxy groups directly bonded to the Si atom of the molecule or hydrolysate thereof and a component B comprising fine particles of silica, an effective amount of at least one cationic photopolymerization initiator and an effective amount of at least one thermal polymerization catalyst, (b) coating at least one surface of the substrate with the composition resulting from step (a), (c) submitting the coated substrate to a photopolymerization step for pre-curing the coating layer; and thereafter, (d) submitting the substrate with the pre-cured coating layer thereon to a thermal curing at a predetermined temperature and for a predetermined time to complete curing of the coating layer.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: April 20, 2004
    Assignee: Essilor International Compagnie Generale d'Optique
    Inventors: Robert Alan Valeri, Kimberly Denise Anderson, Sidney Shaw White, Jr.
  • Patent number: 6720027
    Abstract: Embodiments of the invention relate to an apparatus and method of depositing a titanium silicon nitride layer by cyclical deposition. In one aspect, a titanium silicon nitride layer having a variable content or a controlled composition of titanium, silicon, and nitrogen through the depth of the layer may be formed. One embodiment of this variable content titanium silicon nitride layer or tuned titanium silicon nitride layer includes a bottom sub-layer of TiSiX1NY1, a middle sub-layer of TiSiX2NY2, and a top sub-layer of TiSiX3NY3 in which X1 is less than X2 and X3 is less than X2. Another embodiment of a variable content titanium silicon nitride layer includes a bottom sub-layer of TiSiX1NY1 and a top sub-layer of TiSiX2NY2 in which X2 is greater than X1. Still another embodiment of a variable content titanium silicon nitride layer includes a bottom sub-layer of TiSiX1NY1, a middle sub-layer of TiSiX2NY2, and a top sub-layer of TiSiX3NY3 in which X1 is greater than X2 and X3 is greater than X2.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: April 13, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Ming Xi
  • Patent number: 6720036
    Abstract: A production method of the present invention is a method of producing a spin valve type giant magnetoresistive thin film. In this production method, a buffer layer, an antiferromagnetic layer, a fixed magnetization layer, a nonmagnetic conductive layer, a free magnetization layer, and a protective layer are consecutively stacked on a substrate. Furter, plasma treatment is performed on predetermined stacked interfaces in the spin valve type giant magnetoresistive thin film to reduce the interlayer coupling magnetic field acting between the fixed magnetization layer and the free magnetization layer and to obtain a high MR ratio. The above production method can achieve both of the high MR ratio and low interlayer coupling magnetic field (Hin) in the thin film produced.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: April 13, 2004
    Assignee: Anelva Corporation
    Inventors: Koji Tsunekawa, Daisuke Nakajima
  • Patent number: 6716490
    Abstract: A method for making an enameled steel sheet includes the steps of spraying a slurry to form a slurry layer onto a surface of a substrate and firing the slurry layer. In this method, the slurry has a static surface tension of 50 dyne/cm or less and an apparent viscosity of 500 mPa·s that is measured with a model E viscometer at a rotation of 100 rpm. Alternatively, the method includes a step of spraying a slurry for forming an enamel layer onto a surface of a substrate, wherein the substrate is vibrated when the slurry is applied or when the slurry applied is still fluid.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: April 6, 2004
    Assignee: Kawasaki Steel Metal Products & Engineering Inc.
    Inventors: Kazuhiro Hayashi, Masao Taguchi, Yasumasa Fukushima, Masato Takagi, Shinichi Noma
  • Patent number: 6716488
    Abstract: A ferrite layer formation process that may be performed at a lower temperature than conventional ferrite formation processes. The formation process may produce highly anisotropic structures. A ferrite layer is deposited on a substrate while the substrate is exposed to a magnetic field. An intermediate layer may be positioned between the substrate and the ferrite to promote bonding of the ferrite to the substrate. The process may be performed at temperatures less than 300° C. Ferrite film anisotropy may be achieved by embodiments of the invention in the range of about 1000 dyn-cm/cm3 to about 2×106 dyn-cm/cm3.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 6, 2004
    Assignee: Agere Systems Inc.
    Inventors: Debra Anne Fleming, Gideon S. Grader, David Wilfred Johnson, Jr., John Thomson, Jr., Robert Bruce Van Dover
  • Patent number: 6716484
    Abstract: A method and device of treating an irregularly shaped article to prepare the article for painting is provided. The device includes a burner which can produce an adjustable flame tongue which can fit into crevices, openings and other irregular topographical features of an item to be painted or otherwise coated. The burner device further provides means to apply a grafting chemical on a freshly oxidized surface. Further, the invention provides means to colorize treated objects so that they may be recognized as having been treated. In another embodiment, the grafting chemicals may be enhanced with electrolytic solutions such that electrostatic methods of painting may be subsequently employed on the item. In an alternate embodiment, the burner is adapted to spray a powder inside of a generally enclosed flame, and is used in conjunction with chop guns to manufacture glass or carbon fiber preforms.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: April 6, 2004
    Assignee: Patent Holding Company
    Inventors: Russell Brynolf, Michael D. Elberson
  • Patent number: 6716489
    Abstract: A manufacturing method of a domain wall displacement type magneto-optical recording medium comprises the steps of depositing a magnetic layer on a substrate to prepare a disc, and irradiating the magnetic layer with a converged light beam while applying a magnetic field and annealing the magnetic layer a converged light beam between information tracks.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: April 6, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuyuki Miyaoka
  • Patent number: 6716531
    Abstract: Spray on polyurethaneurea coatings provide corrosion resistance over long periods of time to marine fixtures, particularly of active metals such as aluminum and steel. Radar arches, fishing platforms, railing systems, etc. can maintain their aesthetics over extended periods of time, even in salt water environments, when the coating has been penetrated to the metal surface.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: April 6, 2004
    Inventor: Scott J. McKeand
  • Patent number: 6713132
    Abstract: A shuttle feed passage 7 is provided in each functional processing station from a coating booth 1 to an after-heating booth 6 for performing a series of operations from coating to baking and drying. A conveyance frame 12 is fed to each of the booths 1-6 using a shuttle feed method, and conveyance of the workpiece W is stopped to perform the coating operation and the like. An empty conveyance frame 12 from which the coated workpiece W is removed is circulated through a self-propelled feed passage 9. A carriage 39 of the conveyance frame 12 is caused to travel outside the booth 1, and the supporting arm 13 of the conveyance frame 12 is caused to travel inside the booth, wherein the supporting arm is caused to rotate around the axis.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: March 30, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Kouichi Sashihara
  • Patent number: 6709712
    Abstract: The invention provides a device for holding a substrate during deposition processes that includes a rotation member rotatable about a first, central axis, and a plurality of substrate holders positioned on the rotation member, the substrate holders being rotatable about second axes. In another aspect, the invention provides a method of applying a substantially uniform coating on a substrate including the steps of providing a device of the invention; mounting a substrate onto the substrate mounts; providing at least one substrate coating station in spaced relation to the substrate mounts; rotating the rotation member about a central axis to position one or more of the substrate mounts at the substrate coating station; supplying the coating through the nozzle; moving the nozzle of the coating station in a direction parallel to the substrate at a predetermined rate to apply a uniform coating on the substrate; and rotating the substrate mounts about the second axes during the coating process.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: March 23, 2004
    Assignee: Surmodics, Inc.
    Inventors: Ralph A. Chappa, Steven J. Porter
  • Patent number: 6709704
    Abstract: A method of sealing the cells of a ceramic honeycomb body (5) and a cell sealing material (1) are disclosed which can suppress the deformation and dissolution of the portions of the ceramic honeycomb body dipped in the cell sealing material. An end surface (50) of the ceramic honeycomb body (5), with the portions of the end surface (50) not to be sealed covered with a masking material, is dipped in the cell sealing material (1) thereby to seal the cells in a predetermined part of the end surface. The cell sealing material (1) is composed of ceramic particles and an assistant for fluidizing the ceramic particles. The assistant has the property of not substantially redissolving a binder contained in the ceramic honeycomb body.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: March 23, 2004
    Assignee: Denso Corporation
    Inventors: Satoru Yamaguchi, Hitoshi Kanmura, Noboru Ogino, Takahiro Kondou, Kouji Suzuki
  • Patent number: 6706314
    Abstract: The present invention in one aspect is directed to a method for labeling the durable surface of an object for its identification, which object has a durable surface or a durable surface tag affixed to the object. This method includes the use of “pit and fall” (i.e., holes and bumps as are used to record compact discs, CD-ROMs) technology to encode durable surface objects with coded message. The coded message can be information on the owner, a history of the object, or any other information desired. The coded message would not be detectable to the human eye; however, by scanning the pits and falls with a laser, the coded message could be detected and displayed. Such coded message encoding could be used, for example, to label objects for their identification in case of theft, or in case of product counterfeiting or diversion.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: March 16, 2004
    Assignee: Amesbury Trust
    Inventor: Charles L. Butland
  • Patent number: 6706318
    Abstract: A perpendicular magnetic recording media and method of manufacturing therefore includes a nonmagnetic substrate, an underlayer deposited on the nonmagnetic substrate, and a magnetic recording layer formed on the underlayer, quickly heated, and quenched. A protective layer is deposited on the magnetic recording layer, and a liquid lubricant layer is deposited on the protective layer, to improve an uniaxial anisotropy Ku and a coercive force Hc of the magnetic recording layer.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: March 16, 2004
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Shunji Takenoiri, Yasushi Sakai
  • Patent number: 6703075
    Abstract: A wafer treating method for making adhesive dies is provided. A liquid adhesive with two-stage property is coated on a surface of a wafer. Then, the wafer is pre-cured to make the liquid adhesive transform a thermo-bonding adhesive film having B-stage property which has a glass transition temperature not less than 40° C. for handling without adhesive under room temperature. After positioning the wafer, the wafer is singulated to form a plurality of dies with adhesive for die-to-die stacking, die-to-substrate or die-to-leadframe attaching.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: March 9, 2004
    Assignees: Chipmos Technologies (Bermuda) Ltd., Chipmos Technologies Inc.
    Inventors: Chung-Hung Lin, Jesse Huang, Kuang-Hui Chen, Shih-Wen Chou
  • Patent number: 6699529
    Abstract: A method for coating vehicular radiators with an ozone depleting manganese oxide catalyst in slurry form utilizes a robotic arm with multiple spray heads for spraying the face of the radiator. Each head is in fluid communication with its own dedicated peristaltic pump. The pumps are independently valved into and out of fluid communication with select heads as a function of the spray pattern effected by robotic arm movement.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: March 2, 2004
    Assignee: Engelhard Corporation
    Inventors: James William Garner, Donald Allan Craig, Jeffrey Barmont Hoke, Dieter Lischitzki
  • Patent number: 6699528
    Abstract: Spray on polyurethaneurea coatings provide corrosion resistance over long periods of time to marine fixtures, particularly of active metals such as aluminum and steel. Radar arches, fishing platforms, railing systems, etc. can maintain their aesthetics over extended periods of time, even in salt water environments, when the coating has been penetrated to the metal surface.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: March 2, 2004
    Inventor: Scott J. McKeand
  • Patent number: 6696097
    Abstract: A shaped plastic magnet comprising a shaped body obtained by molding a mixture of an SmFeN magnetic powder with a resin binder into a desired shape, where the surface of the shaped body is subjected to a coating treatment using a phosphate. Preferably, the coating treatment is performed by using a paint containing a phosphate. The shaped plastic magnet may be used as a rotor to be incorporated in motors. The product is highly resistant against corrosion, and provides extended life to motor rotors and the like.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: February 24, 2004
    Assignee: Seiko Precision Inc.
    Inventors: Masami Aizawa, Akihiro Ito, Yasufumi Naoi
  • Patent number: 6696107
    Abstract: The present invention relates to a method for producing an ordered array of nanoparticles on a substrate surface and to a nanomaterial having such an ordered array of nanoparticles. Particularly, but not exclusively, the invention relates to the provision of an ordered array of magnetic nanocrystals on a substrate surface. Although the present invention is not limited to the production of a magnetic array, one important object of the present invention is the production of a material suitable for use as an ultra high density magnetic data storage medium. According to the present invention there is provided a method of producing a structure comprising a plurality of nanoparticles distributed across a surface of a substrate in a predetermined array, the method comprising the steps of: i) providing a substrate which has a passivated surface; ii) depositing nanoparticles on to said surface; and iii) displacing said particles over said surface to configure them in said predetermined array.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: February 24, 2004
    Assignee: Council for the Central Laboratory of the Research Councils
    Inventor: Derek A. Eastham