Patents Examined by Bo J Peng
  • Patent number: 9918660
    Abstract: In a method for correcting respiratory influences on recordings of an examination object by operation of a magnetic resonance apparatus, an external respiratory signal is determined, an internal respiratory signal is determined, a correlation signal is determined, at least one reliability range of the correlation signal is determined, a fit function in at least one reliability range of the correlation signal is determined, and the recordings subject to respiratory influences of the examination object are corrected based on the determined fit function.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: March 20, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Mario Zeller
  • Patent number: 9913587
    Abstract: The present disclosure provides a description of various methods and systems associated with determining possible presence of Atrial Fibrillation (AF). In one example, a camera of a client device, such as a mobile phone, may acquire a series of images of a body part of a user. A plethysmographic waveform may be generated from the series of images. An autocorrelation function may be calculated from the waveform, and a number of features may be computed from the autocorrelation function. Based on an analysis of the features, a determination may be made about whether the user is experience AF. Such determined may be output to a display of the mobile phone for user review.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: March 13, 2018
    Assignee: Cardiio, Inc.
    Inventor: Ming-Zher Poh
  • Patent number: 9913588
    Abstract: The present disclosure provides a description of various methods and systems associated with determining possible presence of Atrial Fibrillation (AF). In one example, a camera of a client device, such as a mobile phone, may acquire a series of images of a body part of a user. A plethysmographic waveform may be generated from the series of images. An autocorrelation function may be calculated from the waveform, and a number of features may be computed from the autocorrelation function. Based on an analysis of the features, a determination may be made about whether the user is experiencing AF. Such determined may be output to a display of the mobile phone for user review.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: March 13, 2018
    Assignee: Cardiio, Inc.
    Inventor: Ming-Zher Poh
  • Patent number: 9907539
    Abstract: Sparse tracking is used in acoustic radiation force impulse imaging. The tracking is performed sparsely. The displacements are measured only one or a few times for each receive line. While this may result in insufficient information to determine the displacement phase shift and/or maximum displacement over time, the resulting displacement samples for different receive lines as a function of time may be used together to estimate the velocity, such as with a Radon transform. The estimation may be less susceptible to noise from the scarcity of displacement samples by using compressive sensing.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 6, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Yassin Labyed, David P. Duncan, Stephen J. Hsu, Seungsoo Kim, Liexiang Fan
  • Patent number: 9901322
    Abstract: The present invention discloses an ophthalmic device with a retinal vascularization monitoring system and associated methods. In some embodiments, the ophthalmic device can be a contact lens with a retinal vascularization monitoring system that can be used to monitor temporal changes of a pulsating vessel forming part of the retinal vascularization. Further, the retinal vascularization monitoring system may include elements for delivering a signal, including an audible and/or visual message, to the user that can be useful for identifying abnormal conditions such as a cardiac failure without delay. The audible and/or visual messages can be signals communicated to the user using one or both of the ophthalmic device and a wireless device in communication with the ophthalmic device.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: February 27, 2018
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventor: Randall Braxton Pugh
  • Patent number: 9888879
    Abstract: A method and system for estimating fractional fat content of an object of interest. An energy emitter is used to direct an energy signal with an energy signal electric field strength toward the region of interest, wherein the region of interest has an object of interest, a reference, and a boundary between the object of interest and the reference. Next, a thermoacoustic or ultrasonic transducer is used to receive a thermoacoustic bipolar signal from the boundary, wherein the thermoacoustic bipolar signal is induced by the energy signal. Finally, a machine is used to accept data from the energy emitter and thermoacoustic or ultrasonic transducer, correlate the thermoacoustic bipolar signal to an electric field strength of the reference at the boundary to generate a corrected thermoacoustic bipolar signal at the boundary, and calculate a fat concentration of the object of interest as a function of the corrected thermoacoustic bipolar signal at the boundary.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: February 13, 2018
    Assignee: ENDRA LIFE SCIENCES INC.
    Inventors: Jang Hwan Cho, Michael M. Thornton
  • Patent number: 9888880
    Abstract: A method and system for estimating fractional fat content of an object of interest. An energy emitter is used to direct an energy signal toward the region of interest, wherein the region of interest has an object of interest, a reference, and a boundary area with one or more boundary locations between the object of interest and the reference. Next, a plurality of thermoacoustic or ultrasonic transducers is used to receive a plurality of thermoacoustic bipolar signals from the one or more boundary locations, wherein the thermoacoustic bipolar signals are induced by the energy signal. A machine configured to accept data from the energy emitter and the plurality of thermoacoustic or ultrasonic transducers and calculate a fat concentration that is a function of the thermoacoustic bipolar signal at each respective boundary location and the distance or distances between locations.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: February 13, 2018
    Assignee: ENDRA LIFE SCIENCES INC.
    Inventors: Jang Hwan Cho, Michael M. Thornton
  • Patent number: 9892557
    Abstract: An integrated system for facilitating local treatment in an organ and capable of universally interfacing with other devices and systems is provided. The integrated system comprises an imaging system interface module configured to functionally associate with an imaging system capable of presenting to a user, through a user-interface device, parameters indicating a mode of operation of the imaging system. The imaging system interface module is configured to receive at least one of the parameters, to interpret such parameter and to allow the integrated system to assume a mode of operation according the parameter. The integrated system further comprises a treatment tool interface module, configured to receive and detect a treatment event signal from a portable treatment tool. The treatment event signal indicates a treatment event, thereby allowing establishing a time of the treatment event and thereby establishing a locality of a treatment provided to the organ by the portable treatment tool.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: February 13, 2018
    Assignee: UC-CARE LTD.
    Inventors: Alex Pasternak, Roni Zvuloni, Tomer Schatzberger, Shaike Schatzberger, Keren Shapira-Schweizer, Moshe Ebenstein, Michael Cohen
  • Patent number: 9883848
    Abstract: An apparent point-source transmit transducers comprises a substantially constant-thickness shell of piezoelectric material in a shape of a spherical-section. Such transducers may be sized such that a single apparent point-source transmit transducer may produce ultrasound waveforms with substantial energy in a medium to be imaged. Use of such transducers in three-dimensional ping-based imaging may permit deeper and higher quality imaging than may be possible with conventional transducers.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: February 6, 2018
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Josef R. Call
  • Patent number: 9835697
    Abstract: An RF-safe interventional or a non-interventional instrument is used during an MR imaging or MR examination of an examination object (A). The instrument is made of or includes at least one longitudinal or elongated electrically conductive element (1, 3), for example, in the form of a conductor or wire or line for feeding electrical signals, or in the form of the instrument itself or a component or a part thereof, which is not provided for feeding electrical signals but is nevertheless electrically conductive. All such elements are subject to RF common mode currents which are induced in the element when the instrument or element is exposed to an RF/MR excitation field generated during MR imaging or MR examination by an MR imaging apparatus. The instrument is made RF-safe by increasing the energy loss of an oscillator which is represented by the conductor (1, 3) by a damping element (4; 6) in order to prevent or limit RF heating of the examination object (A) at or surrounding the conductor (1, 3).
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: December 5, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Oliver Lips, Bernd David
  • Patent number: 9833639
    Abstract: Methods for non-invasive fat reduction can include targeting a region of interest below a surface of skin, which contains fat and delivering ultrasound energy to the region of interest. The ultrasound energy generates a thermal lesion with said ultrasound energy on a fat cell. The lesion can create an opening in the surface of the fat cell, which allows the draining of a fluid out of the fat cell and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: December 5, 2017
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Michael H. Slayton, Peter G. Barthe
  • Patent number: 9833640
    Abstract: Methods and systems for treating skin, such as stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis or a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth with a conformal selective deposition of ultrasound energy without damaging an intervening tissue. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: December 5, 2017
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 9827055
    Abstract: An endovascular device monitoring system is provided that determines, based on movement of the endovascular device past a selected reference location, at least one of a movement rate of a endovascular device and position of a distal end of a endovascular device in a body of a patient.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: November 28, 2017
    Assignee: The Spectranetics Corporation
    Inventors: Brandon Thomas Hendrick, Blaine Andrew Schneider
  • Patent number: 9827449
    Abstract: A system and method for ultrasound treatment of skin laxity are provided. Systems and methods can include ultrasound imaging of the region of interest for localization of the treatment area, delivering ultrasound energy at a depth and pattern to achieve the desired therapeutic effects, and/or monitoring the treatment area to assess the results and/or provide feedback. In an embodiment, a treatment system and method can be configured for producing arrays of sub-millimeter and larger zones of thermal ablation to treat the epidermal, superficial dermal, mid-dermal or deep dermal components of tissue.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: November 28, 2017
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 9827450
    Abstract: A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: November 28, 2017
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Michael H. Slayton, Peter G. Barthe, Inder Raj S. Makin
  • Patent number: 9814439
    Abstract: A difference between a detected motion and a reference motion is automatically displayed. The reference motion is a modeled motion of an organ, a base line motion of an organ or another portion of an organ. A deviation in motion amplitude, angle or both angle and amplitude from a reference set may more easily identify abnormal or normal motion of the organ.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: November 14, 2017
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Liexiang Fan, David E. Gustafson, John I. Jackson
  • Patent number: 9801615
    Abstract: A method is described for acquiring 3D quantitative ultrasound elastography volumes. In one embodiment, the method comprises using a 2D ultrasound transducer to scan a volume of tissue through which shear waves are created using an external vibration source, the synchronized measurement of tissue motion within the plane of the ultrasound transducer with the measurement of the transducer location in space, the reconstruction of tissue displacements in time and space over a volume from this synchronized measurement, and the computation of one or several mechanical properties of tissue from this volumetric measurement of displacements. The tissue motion in the plane of the transducer may be measured at a high effective frame rate in the axial direction of the transducer, or in the axial and lateral directions of the transducer. The tissue displacements over the measured volume may be interpolated over a regular grid in order to make the computation of mechanical properties easier.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 31, 2017
    Assignee: The University of British Columbia
    Inventors: Septimiu Edmund Salcudean, Caitlin Marie Schneider, Robert N. Rohling, Ali Baghani
  • Patent number: 9795359
    Abstract: An apparatus for performing measurements in an artery includes a Doppler catheter, comprising a Doppler transducer and a wire connected to the Doppler transducer; and an elongated catheter body having a conduit therein for housing the wire of the Doppler catheter. The body has a proximal end and a distal end; wherein the wire is movable in the conduit relative to the catheter body so that the Doppler transducer and the wire are capable of being threaded into said conduit at the proximal end after the distal end of the catheter has been inserted into the artery, until the Doppler transducer emerges outside the conduit at the distal end of said body for performing ultrasound measurements in the artery. Another embodiment employs at least an additional side transducer for measuring the cross-sectional dimension of the artery useful for computing blood flow.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: October 24, 2017
    Inventor: Nadarasa Visveshwara
  • Patent number: 9795302
    Abstract: Implementations of the tissue illumination systems, devices, and methods disclosed herein take advantage of the translucent nature of tissue to reveal properties by light transmission, for example, tissue type, tissue transition locations, underlying structures, and the like, that are not easily distinguished by reflected light. Illuminating a back-side of a translucent tissue permits a user to distinguish between different types of tissue, tissue transition locations, and/or structures that are difficult or impossible to discern under overhead or front-side illumination. Implementations include a light source that is positionable behind a tissue or disposable within a body cavity or duct, for example, within a heart ventricle.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: October 24, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Emil Karapetian, Erin M. Spinner, Devin H. Marr, Glen T. Rabito
  • Patent number: 9770188
    Abstract: An animal handling system (AMS), for positioning an immobilized animal in a predefined configuration therein, comprising an automated tuning unit, including: a proximal portion, held outside a medical device including: at least one inner shaft and at least one outer shaft, the at least one inner is telescopically maneuverable within the at least one outer shaft providing a variable telescopic mechanism; and a distal portion including: a configurable encapsuable life support system (ELSS), the ELSS is rotatable about a longitudinal axis of the at least outer shaft and the at least inner shaft and translationally moveable parallel to the longitudinal axis by means of the maneuverable telescopic mechanism.
    Type: Grant
    Filed: December 11, 2016
    Date of Patent: September 26, 2017
    Assignee: ASPECT IMAGING LTD.
    Inventors: Uri Rapoport, Itzhak Rabinovitz