Abstract: A process for producing colloidal crystals immobilized with a polymer, comprising the steps of: preparing a monomer-dispersion in which colloidal crystals having a three-dimensionally ordered array state are formed by adding, to a monomer-containing liquid containing at least one kind of monomers, colloidal particles having an average particle size in a range from 0.01 ?m to 10 ?m and a degree of monodispersity expressed by a following equation (1) of 20% or below, [Degree of monodispersity (unit: %)]=([Standard deviation of particle size]/[Average particle size])×100??(1) and then by dispersing the colloidal particles so as to arrange the colloidal particles in a three-dimensionally ordered array state at which a reflection spectrum thereof exhibits a reflection peak; and obtaining the colloidal crystals immobilized with a polymer by polymerizing the monomers in the monomer-dispersion.
Abstract: The surface of a gallium nitride single crystal substrate is processed, e.g., comprising steps by planarizing the top side and the bottom side of a gallium nitride original substrate positioned on a support bed; radiating light having wavelengths ranging from 370 to 800 nanometers (nm) onto the planarized gallium nitride original substrate; measuring transmittance of the gallium nitride original substrate; and confirming whether the transmittance is within the range of 65 to 90%. A gallium nitride single crystal substrate obtained through the method of processing the surface has high transmittance ranging from 65 to 90% measured using light having wavelengths of 370 to 800 nm. The thickness ratio (DLa/DLb) of the damage layers on the both sides of the gallium nitride single crystal substrate can be obtained within the range of 0.99 to 1.01.
Abstract: Provided is an apparatus capable of producing a fluoride crystal in a very short period of time, and a method suitable for producing a fluoride crystal using the apparatus. The apparatus comprises a chamber, a window material, and the like, and is modified such that it can evacuate air from the chamber to provide a high degree vacuum there. The apparatus further includes a crucible, which has a perforation at its bottom. The capillary portion of the perforation is adjusted to facilitate the contact of a seed crystal with a melt. By using the apparatus it is possible to stably produce high quality single crystals of fluorides in a short period of time.
Abstract: A ribbon crystal pulling furnace has an interior for enclosing at least a portion of one or more ribbon crystals, and an afterheater positioned within the interior. The afterheater has at least one wall with one or more openings that facilitate control of the temperature profile within the furnace.
Type:
Grant
Filed:
June 13, 2008
Date of Patent:
December 11, 2012
Assignee:
Evergreen Solar, Inc
Inventors:
Weidong Huang, David Harvey, Scott Reitsma
Abstract: The invention provides a method to enforce face-to-face stacking of organic semiconductors in the solid state that employs semiconductor co-crystal formers (SCCFs), to align semiconductor building blocks (SBBs). Single-crystal X-ray analysis reveals ?-orbital overlap optimal for organic semiconductor device applications.
Type:
Grant
Filed:
December 9, 2008
Date of Patent:
December 11, 2012
Assignee:
University of Iowa Research Foundation
Inventors:
Leonard R. MacGillivray, Anatoliy N. Sokolov
Abstract: A group III nitride crystal containing therein an alkali metal element comprises a base body, a first group III nitride crystal formed such that at least a part thereof makes a contact with the base body, the first group III nitride crystal deflecting threading dislocations in a direction different from a direction of crystal growth from the base body and a second nitride crystal formed adjacent to the first group III nitride crystal, the second nitride crystal having a crystal growth surface generally perpendicular to the direction of the crystal growth.
Abstract: An SOI wafer is constructed from a carrier wafer and a monocrystalline silicon layer having a thickness of less than 500 nm, an excess of interstitial silicon atoms prevailing in the entire volume of the silicon layer. The SOI wafers may be prepared by Czochralski silicon single crystal growth, the condition v/G<(v/G)crit=1.3×10?3 cm2/(K·min) being fulfilled at the crystallization front over the entire crystal cross section, with the result that an excess of interstitial silicon atoms prevails in the silicon single crystal produced; separation of at least one donor wafer from this silicon single crystal, bonding of the donor wafer to a carrier wafer, and reduction of the thickness of the donor wafer, with the result that a silicon layer having a thickness of less than 500 nm bonded to the carrier wafer remains.
Type:
Grant
Filed:
January 18, 2008
Date of Patent:
December 4, 2012
Assignee:
Siltronic AG
Inventors:
Dieter Graef, Markus Blietz, Reinhold Wahlich, Alfred Miller, Dirk Zemke
Abstract: Bulk single crystal of aluminum nitride (AlN) having an a real planar defect density?100 cm?2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Type:
Grant
Filed:
January 17, 2008
Date of Patent:
December 4, 2012
Assignee:
Crystal IS, Inc.
Inventors:
Robert T. Bondokov, Kenneth E. Morgan, Leo J. Schowalter, Glen A. Slack
Abstract: A directional solidification furnace includes a crucible for holding molten silicon and a lid covering the crucible and forming an enclosure over the molten silicon. The crucible also includes an inlet in the lid for introducing inert gas above the molten silicon to inhibit contamination of the molten silicon.
Type:
Grant
Filed:
September 19, 2009
Date of Patent:
November 27, 2012
Assignee:
MEMC Singapore Pte. Ltd.
Inventors:
Steven L. Kimbel, Jihong (John) Chen, Richard G. Schrenker, Lee W. Ferry
Abstract: A protective coating is prepared for, and applied to, crucibles used in the handling of molten materials that are solidified in the crucible and then removed as ingots. Crucibles containing this protective coating may be used for the solidification of silicon. The coating has a specified oxygen content and contains a mineral binder and silicon nitride or silicon oxynitride.
Abstract: A method of forming a templated casting involves incorporating a liquid feedstock into the channels of a honeycomb substrate to form a feedstock-laden substrate, and directionally solidifying the liquid feedstock within the channels.
Type:
Grant
Filed:
February 26, 2009
Date of Patent:
October 23, 2012
Assignee:
Corning Incorporated
Inventors:
Prantik Mazumder, Frederick Ernest Noll, John Forrest Wight, Jr.
Abstract: The present invention relates to a large-sized and high-quality bismuth-zinc-borate (Bi.sub.2 ZnB.sub.2 O.sub.7) single crystal, preparation methods and applications thereof. The crystal has cross-sectional dimensions greater than one centimeter, a nonlinear optical effect of about 3-4 times that of KH.sub.2 PO.sub.4 (KDP), and an optical transmission wavelength range of 330-3300 nm. The crystal can be grown from a compound melt by a Czochralski method, a Kyropoulos method or a Bridgman method with the raw material being the synthetic compound Bi.sub.2 ZnB.sub.2 O.sub.7. Alternatively, the crystal may be grown from a high-temperature solution method by using Bi.sub.2 O.sub.3 as a flux. The crystal may be applied in nonlinear optical devices such as frequency doubling generators, frequency upconverters or downconverters, and optical parametric oscillators.
Type:
Grant
Filed:
April 8, 2009
Date of Patent:
October 23, 2012
Assignee:
Xingjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences
Abstract: A pressure differential is applied across a mold sheet and a semiconductor (e.g. silicon) wafer (e.g. for solar cell) is formed thereon. Relaxation of the pressure differential allows release of the wafer. The mold sheet may be cooler than the melt. Heat is extracted almost exclusively through the thickness of the forming wafer. The liquid and solid interface is substantially parallel to the mold sheet. The temperature of the solidifying body is substantially uniform across its width, resulting in low stresses and dislocation density and higher crystallographic quality. The mold sheet must allow flow of gas through it. The melt can be introduced to the sheet by: full area contact with the top of a melt; traversing a partial area contact of melt with the mold sheet, whether horizontal or vertical, or in between; and by dipping the mold into a melt. The grain size can be controlled by many means.
Type:
Grant
Filed:
November 17, 2011
Date of Patent:
October 23, 2012
Assignee:
1366 Technologies Inc.
Inventors:
Emanuel M. Sachs, Richard L. Wallace, Eerik T. Hantsoo, Adam M. Lorenz, G. D. Stephen Hudelson, Ralf Jonczyk
Abstract: Devices and methods for providing stimulated Raman lasing are provided. In some embodiments, devices include a photonic crystal that includes a layer of silicon having a lattice of holes and a linear defect that forms a waveguide configured to receive pump light and output Stokes light through Raman scattering, wherein the thickness of the layer of silicon, the spacing of the lattice of holes, and the size of the holes are dimensioned to provide Raman lasing. In some embodiments, methods include forming a layer of silicon, and etching the layer of silicon to form a lattice of holes with a linear defect that forms a waveguide configured to receive pump light and output Stokes light through Raman scattering, wherein the thickness of the layer of silicon, the spacing of the lattice of holes, and the size of the holes are dimensioned to provide Raman lasing.
Type:
Grant
Filed:
November 17, 2010
Date of Patent:
October 16, 2012
Assignee:
The Trustees of Columbia University in the City of New York
Inventors:
Chee Wei Wong, James F. McMillan, Xiaodong Yang, Richard Osgood, Jr., Jerry Dadap, Nicolae Panoiu
Abstract: In the production process of the present invention for high purity polycrystal silicon, using a vertical reactor having a silicon chloride gas-feeding nozzle and a reducing agent gas-feeding nozzle which are disposed at an upper part and a waste gas discharge pipe, a silicon chloride gas and a reducing agent gas are fed into the reactor to form polycrystal silicon at a tip part of the silicon chloride gas-feeding nozzle by the reaction of the silicon chloride gas with the reducing agent gas, and the polycrystal silicon is allowed to grow from the tip part of the silicon chloride gas-feeding nozzle toward a lower part thereof.
Abstract: An apparatus and methods of forming the apparatus include a film of transparent conductive titanium-doped indium oxide for use in a variety of configurations and systems. The film of transparent conductive titanium-doped indium oxide may be structured as one or more monolayers. The film of transparent conductive titanium-doped indium oxide may be formed using atomic layer deposition.
Abstract: A method is provided of growing crystals from compounds that melt congruently with negligible volatilization. The composition of one or more crystal samples is measured. A determination is made of a deviation of crystal composition from congruency. A determination is made of an initial melt composition and a source material composition correction relative to the deviation. Crystals are grown using the composition correction to yield reproducible material for surface acoustic substrate manufacturing.
Type:
Grant
Filed:
March 20, 2009
Date of Patent:
September 11, 2012
Assignee:
Crystal Technology, Inc.
Inventors:
Dieter Hans Jundt, Maria Claudia Custodio Kajiyama, John Thomas Carella
Abstract: An apparatus and method for producing a crystalline ribbon continuously from a melt pool of liquid feed material, e.g. silicon. The silicon is melted and flowed into a growth tray to provide a melt pool of liquid silicon. Heat is passively extracted by allowing heat to flow from the melt pool up through a chimney. Heat is simultaneously applied to the growth tray to keep the silicon in its liquid phase while heat loss is occurring through the chimney. A template is placed in contact with the melt pool as heat is lost through the chimney so that the silicon starts to “freeze” (i.e. solidify) and adheres to the template. The template is then pulled from the melt pool thereby producing a continuous ribbon of crystalline silicon.
Abstract: A weir is extended vertically to define an optimal annular gap between the top of the weir and the underside of a super-adjacent heat shield. The annular gap provides a high velocity stream of argon gas to be directed from the growth region to the melt region to substantially eliminate the transport of airborne particles from the melt region to the growth region. The tall weir may be configured as a modular, reusable weir extension supportably engaged with an outer (and/or inner) weir.
Abstract: The present invention relates to conjugated polymers and a method for their synthesis. Furthermore, the present invention relates to electro-synthesis methods for producing polymers that include the use of at least one Lewis acid and at least one proton trap to form organic conjugated polymers having elevated refractive indices. In one embodiment, the present invention relates to an organic polymer having an elevated refractive index, the organic polymer formed by a process comprising the steps of: providing a solution of unsaturated organic monomer units and at least one acidic component; impeding saturation of the unsaturated organic-monomer units by at least one protic element in the solution; and polymerizing the unsaturated organic monomer units to form a conjugated organic polymer having a refractive index of at least about 2.3 for electromagnetic energy having a wavelength of about 700 nm.
Type:
Grant
Filed:
August 19, 2005
Date of Patent:
September 4, 2012
Assignee:
The University of Akron
Inventors:
Stephen Z. Cheng, Matthew J. Graham, Frank W. Harris, Shi Jin