Patents Examined by Bob M Kunemund
  • Patent number: 8696808
    Abstract: Each region, which should be left on a substrate after patterning, of a semiconductor film is grasped in accordance with a mask. Then, each region to be scanned with laser light is determined so that at least the region to be obtained through the patterning is crystallized, and a beam spot is made to hit the region to be scanned, thereby partially crystallizing the semiconductor film. Each portion with low output energy of the beam spot is shielded by a slit. In the present invention, the laser light is not scanned and irradiated onto the entire surface of the semiconductor film but is scanned such that at least each indispensable portion is crystallized to a minimum. With the construction described above, it becomes possible to save time taken to irradiate the laser light onto each portion to be removed through the patterning after the crystallization of the semiconductor film.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Satoshi Murakami, Mai Akiba
  • Patent number: 8691008
    Abstract: Pulling systems are disclosed for measuring the weight of an object coupled to a first end of a cable. The cable is routed over a pulley suspended from a load cell. The force exerted by the cable on the pulley is used to calculate the weight of the object. The second end of the cable is coupled to a drum which when rotated pulls the object by wrapping the cable around the drum. An arm is coupled to the pulley at one end and to a frame at another end. A path travelled by the cable between the pulley and the drum is substantially parallel to a longitudinal axis of the arm. Horizontal force components are transmitted by the arm to the frame and do not affect a force component measured by the load cell, thus increasing the accuracy of the calculated weight of the object.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: April 8, 2014
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Harold Korb, Richard J. Phillips
  • Patent number: 8691010
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 8, 2014
    Assignee: California Institute of Technology
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Patent number: 8691009
    Abstract: A pulling apparatus and a method with which especially heavy crystals (5) can be pulled using the Czochralski method utilizing the pulling apparatus. For this purpose the neck (4) of the crystal (5) has an enlargement (10) beneath which extends the support device. This device includes latches (7), which are moved from a resting position into an operating position in which the latches (7) extend beneath the enlargement (10). Each latch (7) is supported on the base body such that it is swivellable about a pivot axis (8) and can assume two stable positions, namely the resting position and the operating position. Each of these positions is defined by a stop on the base body. When the latch rests on the one stop, its center of gravity, viewed from the neck (4), is located on the other side of the pivot axis (8). When the latch rests on the other stop, the center of gravity is located on this side of the pivot axis (8).
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: April 8, 2014
    Assignee: Siltronic AG
    Inventors: Burkhard Altekrüger, Stefan Henkel, Axel Vonhoff, Erich Tomzig, Dieter Knerer
  • Patent number: 8685165
    Abstract: Atomic layer deposition (ALD) type processes for producing titanium containing oxide thin films comprise feeding into a reaction space vapor phase pulses of titanium alkoxide as a titanium source material and at least one oxygen source material, such as ozone, capable of forming an oxide with the titanium source material. In preferred embodiments the titanium alkoxide is titanium methoxide.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: April 1, 2014
    Assignee: ASM International N.V.
    Inventors: Antti Rahtu, Raija Matero, Markku Leskela, Mikko Ritala, Timo Hatanpaa, Timo Hanninen, Marko Vehkamaki
  • Patent number: 8673072
    Abstract: An apparatus and method of manufacturing a crystal grower is disclosed. The crystal growing apparatus includes a receptacle constructed to receive a material selected to grow a crystal and an induction heater constructed to heat the material, with the induction heater comprising a Litz coil and a hose constructed to receive the Litz coil therein. The hose further comprises an inner liner formed of an electrically non-conductive material, a reinforcement layer surrounding the inner liner to provide structural reinforcement thereto, and an outer liner applied about the reinforcement layer to form an exterior of the hose.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: March 18, 2014
    Assignee: ABP Induction, LLC
    Inventor: Donald H. Wiseman
  • Patent number: 8663387
    Abstract: A method and system for processing at least one portion of a thin film sample on a substrate, with such portion of the film sample having a first boundary and a second boundary. One or more first areas of the film sample are successively irradiated by first beamlets of an irradiation beam pulse so that the first areas are melted throughout their thickness and allowed to re-solidify and crystallize thereby having grains grown therein. Thereafter, one or more second areas of the film sample are irradiated by second beamlets so that the second areas are melted throughout their thickness. At least two of the second areas partially overlap a particular area of the re-solidified and crystallized first areas such that the grains provided in the particular area grow into each of the at least two second areas upon re-solidification thereof.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 4, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8657955
    Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: February 25, 2014
    Assignees: NGK Insulators, Ltd, Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Patent number: 8652254
    Abstract: The invention is a method for pulling a silicon single crystal, which is a Czochralski method for growing the silicon single crystal by contacting a seed crystal with a melt and by pulling up, including the steps of: contacting the seed crystal with the melt; forming a necking portion under the seed crystal; and forming the silicon single crystal under the necking portion by increasing a diameter, wherein a pulling rate during forming the necking portion is 2 mm/min or less, and the silicon single crystal with the increased diameter is a boron-doped silicon single crystal having a resistivity of 1.5 m?·cm or less at a shoulder portion. Therefore, there can be provided a method of pulling a silicon single crystal without generating defects such as scratches at a wafer surface in the case of processing a boron-doped silicon single crystal ingot with a low resistivity produced by CZ method into a wafer.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 18, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Satoshi Soeta, Masahiro Mori
  • Patent number: 8647436
    Abstract: Isotopically-enriched graphene and isotope junctions are epitaxially grown on a catalyst substrate using a focused carbon ion beam technique. The focused carbon ion beam is filtered to pass substantially a single ion species including a single desired carbon isotope. The ion beam and filtering together provide a means to selectively isotopically-enrich the epitaxially-grown graphene from given carbon precursor and to selectively deposit graphene enriched with different carbon isotopes in different regions.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 11, 2014
    Assignees: Raytheon Company, The Arizona Board of Regents
    Inventors: Delmar L. Barker, William R. Owens, John Warren Beck
  • Patent number: 8647434
    Abstract: An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000° C. on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: February 11, 2014
    Assignee: Sulzer Metco AG
    Inventor: Hans Von Kaenel
  • Patent number: 8647435
    Abstract: HVPE reactors and methods for growth of p-type group III nitride materials including p-GaN. A reaction product such as gallium chloride is delivered to a growth zone inside of a HVPE reactor by a carrier gas such as Argon. The gallium chloride reacts with a reactive gas such as ammonia in the growth zone in the presence of a magnesium-containing gas to grow p-type group III nitride materials. The source of magnesium is an external, non-metallic compound source such as Cp2Mg.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: February 11, 2014
    Assignee: Ostendo Technologies, Inc.
    Inventors: Vladimir A. Dmitriev, Oleg V. Kovalenkov, Vladimir Ivantsov, Lisa Shapovalov, Alexander L. Syrkin, Anna Volkova, Vladimir Sizov, Alexander Usikov, Vitali A. Soukhoveev
  • Patent number: 8641820
    Abstract: An implementation of a Czochralski-type crystal growth has been shown and embodied. More particularly, a furnace with suitable insulation and flow arrangement is shown to improve the cost-efficiency of production of crystals. That is achieved by the shown new hot-zone structure, gas flows and the growth process which can decrease the power consumption, increase the lifetime of hot-zone parts and improve the productivity, e.g., by giving means for opening the hot-zone and easily adapting the hot-zone to a new crystal diameter.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 4, 2014
    Assignee: Okmetic Oyj
    Inventors: Olli Anttila, Ari Saarnikko, Jari Paloheimo
  • Patent number: 8632633
    Abstract: Engineered defects are reproduced in-situ with graphene via a combination of surface manipulation and epitaxial reproduction. A substrate surface that is lattice-matched to graphene is manipulated to create one or more non-planar features in the hexagonal crystal lattice. These non-planar features strain and asymmetrically distort the hexagonal crystal lattice of epitaxially deposited graphene to reproduce “in-situ” engineered defects with the graphene. These defects may be defects in the classic sense such as Stone-Wales defect pairs or blisters, ridges, ribbons and metacrystals. Nano or micron-scale structures such as planar waveguides, resonant cavities or electronic devices may be constructed from linear or closed arrays of these defects. Substrate manipulation and epitaxial reproduction allows for precise control of the number, density, arrangement and type of defects. The graphene may be removed and template reused to replicate the graphene and engineered defects.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: January 21, 2014
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, Brian J. Zelinski, William R. Owens
  • Patent number: 8628614
    Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: January 14, 2014
    Assignee: AMG IdealCast Solar Corporation
    Inventor: Nathan G. Stoddard
  • Patent number: 8628615
    Abstract: An apparatus and methods of forming the apparatus include a film of transparent conductive titanium-doped indium oxide for use in a variety of configurations and systems. The film of transparent conductive titanium-doped indium oxide may be structured as one or more monolayers. The film of transparent conductive titanium-doped indium oxide may be formed using atomic layer deposition.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 8623138
    Abstract: A group-III nitride crystal growth method comprises the steps of: a) preparing a mixed molten liquid of an alkaline material and a substance at least containing a group-III metal; b) causing growth of a group-III nitride crystal from the mixed molten liquid prepared in the step a) and a substance at least containing nitrogen; and c) creating a state in which nitrogen can be introduced into the molten liquid prepared by the step a).
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: January 7, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Seiji Sarayama, Hisanori Yamane, Masahiko Shimada, Masafumi Kumano, Hirokazu Iwata, Takashi Araki
  • Patent number: 8617311
    Abstract: In this silicon single crystal wafer for IGBT, COP defects and dislocation clusters are eliminated from the entire region in the radial direction of the crystal, the interstitial oxygen concentration is 8.5×1017 atoms/cm3 or less, and variation in resistivity within the wafer surface is 5% or less. This method for manufacturing a silicon single crystal wafer for IGBT includes introducing a hydrogen atom-containing substance into an atmospheric gas at a hydrogen gas equivalent partial pressure of 40 to 400 Pa, and growing a single crystal having an interstitial oxygen concentration of 8.5×1017 atoms/cm3 or less at a silicon single crystal pulling speed enabling pulling of a silicon single crystal free of grown-in defects. The pulled silicon single crystal is irradiated with neutrons so as to dope with phosphorous; or an n-type dopant is added to the silicon melt; or phosphorous is added to the silicon melt so that the phosphorous concentration in the silicon single crystal is 2.9×1013 to 2.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: December 31, 2013
    Assignee: Sumco Corporation
    Inventors: Toshiaki Ono, Shigeru Umeno, Wataru Sugimura, Masataka Hourai
  • Patent number: 8617310
    Abstract: Methods of evaluating a superabrasive volume or a superabrasive compact are disclosed. One method may comprise exposing a superabrasive volume to beta particles and detecting a quantity of scattered beta particles. Further, a boundary may be perceived between a first region and a second region of the superabrasive volume in response to detecting the quantity of scattered beta particles. In another embodiment, a boundary between a catalyst-containing region and a catalyst-diminished region of a polycrystalline diamond volume may be perceived. In a further embodiment, a boundary may be perceived between a catalyst-containing region and a catalyst-diminished region of a polycrystalline diamond compact. Additionally, a depth to which a catalyst-diminished region extends within a polycrystalline diamond volume of a polycrystalline diamond compact may be measured in response to detecting a quantity of scattered beta particles. A system configured to evaluate a superabrasive volume is disclosed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: December 31, 2013
    Assignee: US Synthetic Corporation
    Inventor: Michael A. Vail
  • Patent number: 8617312
    Abstract: A method of forming (and system for forming) layers, such as calcium, barium, strontium, and/or magnesium, tantalates and/or niobates, and optionally titanates, on a substrate by employing a vapor deposition method, particularly a multi-cycle atomic layer deposition process.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: December 31, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Brian A. Vaartstra, Stefan Uhlenbrock