Patents Examined by Bradley Etherton
  • Patent number: 8288604
    Abstract: A method of rapid methylation of an aromatic compound or an alkenyl compound, which is capable of obtaining an aromatic compound or an alkenyl compound labeled with a methyl group or a fluoromethyl group under a mild condition rapidly in high yield using an organic boron compound whose toxicity is not so high as a substrate. A kit for preparing a PET tracer and a method of producing a PET tracer can be practiced using the rapid methylation method. In an aprotic polar solvent, methyl iodide or X—CH2F (wherein X is a functional group which can be easily released as an anion), and an organic boron compound in which an aromatic ring or an alkenyl group is attached to boron are subjected to cross-coupling in the presence of a palladium(0) complex, a phosphine ligand, and a base.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 16, 2012
    Assignees: Gifu University, Riken, Hamamatsu Photonics K.K.
    Inventors: Masaaki Suzuki, Hisashi Doi, Hideo Tsukada
  • Patent number: 8278235
    Abstract: A cracking catalyst contains a substantially inert core and an active shell, the active shell containing a zeolite catalyst and a matrix. The catalyst is formed by spray-drying a slurry containing water, substantially inert microspheres and a zeolite precursor and crystallizing zeolite in the active shell to create the cracking catalyst. Methods of using the cracking catalyst are also described.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 2, 2012
    Assignee: BASF Corporation
    Inventors: David Matheson Stockwell, John M. Macaoay
  • Patent number: 8273937
    Abstract: Methods for producing in a reactor natural gas from heavy hydrocarbons. A mixture of heavy hydrocarbons and a catalyst comprising a transition metal are heated under an anoxic condition in a reactor. Natural gas, e.g., catalytic natural gas, is generated from the heavy hydrocarbons by a disproportionation reaction promoted by the catalyst. The anoxic condition can be created by flowing an anoxic stimulation gas in the reactor.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 25, 2012
    Assignee: Petroleum Habitats, LLC
    Inventor: Frank D. Mango
  • Patent number: 8273930
    Abstract: A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 25, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zhiguo Wu, Wenhua Xie, Chaogang Xie, Qiang Liu, Xuhong Mu, Jiushun Zhang, Yibin Luo, Xingtian Shu, Chenghan Yan
  • Patent number: 8269055
    Abstract: The present invention relates to a method for the deactivation of an organometallic catalyst in the product stream from an oligomerization reactor for the production of linear alpha-olefin, characterized in that the catalyst-containing product stream of the reactor is subjected to a temperature of at least 160° C. in a heating device. A reactor system for the method of the invention is also disclosed.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 18, 2012
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Peter Fritz, Heinz Bölt, Fuad Mosa, Talal Ali
  • Patent number: 8263518
    Abstract: A method of preparing a catalyst comprising selecting a zeolite having a mean particle size of equal to or less than about 6 microns, blending the zeolite with a binder and water to form a paste, shaping the paste into a bound zeolite support, adding a metal to the bound zeolite support to form a metalized catalyst support, and adding at least one halide to the metalized catalyst support to form the catalyst. A catalytic reforming process for converting hydrocarbons to aromatics comprising: contacting a catalyst comprising a silica bound zeolite, a Group VIII metal supported thereby, and at least one halide with a hydrocarbon feed in a reaction zone under reforming conditions and recovering aromatics from the reaction zone, wherein the silica bound zeolite comprises a zeolite having a mean particle size of equal to or less than about 6 microns and a median particle size of equal to or less than about 5 microns.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 11, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gyanesh P. Khare
  • Patent number: 8258361
    Abstract: The invention provides transition metal complex compounds, high-activity olefin oligomerization catalysts containing the compounds, and olefin oligomerization processes using the catalysts. A transition metal complex compound [A] according to the invention is represented by Formula (I) or Formula (I?) below. An olefin oligomerization catalyst includes the transition metal complex compound [A]. In an olefin oligomerization process of the invention, an olefin is oligomerized in the presence of the catalyst.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 4, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuhiko Suzuki, Shinsuke Kinoshita, Atsushi Shibahara, Naritoshi Yoshimura, Isao Hara, Tetsuya Hamada, Kazumori Kawamura, Kou Tsurugi, Yasunori Saito, Seiichi Ishii, Yasushi Nakayama, Naoto Matsukawa, Susumu Murata
  • Patent number: 8237000
    Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 7, 2012
    Assignee: Lummus Technology, Inc.
    Inventors: Stephen C. Arnold, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
  • Patent number: 8212098
    Abstract: An improved process for removing polymeric by-product (ASO) from the HF alkylation acid in an HF alkylation unit used for the production of gasoline boiling range alkylate product by olefin/iso-paraffin alkylation, comprises fractionating a portion of the circulating HF alkylation acid inventory of the unit with a portion of hot alkylate product in a fractionation zone to from an overhead product comprising HF alkylation acid and water and a bottoms fraction comprising the polymeric by-product and alkylate. The bottoms fraction is sent to the isoparaffin stripper of the unit to remove trace HF alkylation acid as overhead and form a product stream of hot alkylate as a bottoms fraction.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: D'Arcy H. J. Blais, Doug F. Bodeux, Steve L. Burgwin, Alexander D. Chan, Gary S. Locke, Jerry H. Squires, Sarah J. Virtue
  • Patent number: 8207390
    Abstract: A low viscosity poly(alpha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis-cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1 and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins, has a Mw/Mn between 1 and 1.4, and a kinematic viscosity at 100° C. of 20 cSt or less.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: June 26, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang
  • Patent number: 8203025
    Abstract: The invention provides a solid phosphoric acid catalyst which has high activity and attains high dimer selectivity in olefin dimerization reactions and efficient methods of olefin dimerization. The solid phosphoric acid catalyst comprises a carrier and phosphoric acid supported thereon. When the solid phosphoric acid catalyst is heated at 250° C. for 20 minutes, heating loss of water is 50 mass % or more based on diphosphorus pentoxide (P2O5) derived from the phosphoric acid. A method of olefin dimerization comprises bringing an olefin-containing feed material containing water in an amount of 10-1000 mass ppm into contact with the catalyst to initiate the reaction.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: June 19, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Tatsuo Hamamatsu, Nobuhiro Kimura, Tsutomu Takashima, Takashi Morikita
  • Patent number: 8198497
    Abstract: A catalytic composition for the selective oligomerization of ethylene and a process for preparing light linear (?-olefins, especially 1-hexene and 1-octene, starting from ethylene, using this composition, said composition comprising the following components: (A) a compound of a transition metal M of Group 4 of the periodic table; (B) an organic compound containing the sulfonic group (>SO2) bonded to two carbon atoms; (C) a hydrocarbyl organometallic compound of a metal M? selected from elements of Groups 1, 2, 12, 13 or 14 of the periodic table; components (A), (B) and (C) being in such a quantity that the atomic ratios respectively of the metal M in (A), of the sulfur S in the sulfonic group of (B) and of the metal M? in (C), respect the following proportions: S/M=(from 0 to 20)/1 and M?/M=(from 2 to 2000)/1, on the condition that when the compound of the metal M in component (A) is not a sulfonic complex of M, the S/M ratio is greater than 0.5, preferably greater than 1.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: June 12, 2012
    Assignee: Polimeri Europa S.p.A.
    Inventors: Paolo Biagini, Liliana Gila
  • Patent number: 8198499
    Abstract: A process for a liquid/liquid reaction employs a nozzle dispersion whereby liquid reactants and liquid catalyst are injected through at least one nozzle into a reaction zone to effect a reaction. The reaction can be alkylation of at least one isoparaffin with at least one olefin in the presence of an ionic liquid catalyst. The at least one nozzle provides intimate contact between the phases for greater product control and reaction control.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 12, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Abdenour Kemoun, Hye-Kyung Timken
  • Patent number: 8183425
    Abstract: Provided is a process for producing low volatility, high quality gasoline blending components from a number of isoparaffin feed streams, olefin feed streams, and ionic liquid catalyst streams. The process entails providing an isoparaffin feed stream comprising isoparaffins, an olefin feed stream comprising olefins, and a catalyst stream comprising ionic liquid catalyst, and subsequently splitting at least the reactive olefin feed stream for feeding into the reaction zone at different locations.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 22, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Abdenour Kemoun, Hye-Kyung Timken
  • Patent number: 8178740
    Abstract: A process for the use in the oligomerization of olefins is presented. The process produces a gasoline boiling range product having a high research octane number and almost no aromatics content. The process utilizes a solid catalyst comprising a zeolite that is treated with a phosphorous containing reagent to generate a catalyst having phosphorous content between 0.5 and 15 wt %.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 15, 2012
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Laszlo T. Nemeth, Deng-Yang Jan
  • Patent number: 8168842
    Abstract: Process for the alkylation of a cycloalkene, which process comprises alkylating a cycloalkene with an oxygenate under alkylating conditions in the presence of a zeolite; to yield an alkylated cycloalkene. Composition obtainable by such a process and use of such a composition as a gasoline blending component.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: May 1, 2012
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Aden Murphy, Michiel Johannes Franciscus Maria Verhaak, Jeroen Van Westrenen
  • Patent number: 8168841
    Abstract: Preparation of cyclododecatriene in a continuous or discontinuous process by trimerization of butadiene in the presence of a catalyst system and a solvent, the crude cyclododecatriene obtained being able to be isolated by means of distillation. The cyclooctadiene formed as by-product can likewise be isolated from the crude product.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: May 1, 2012
    Assignee: EVONIK DEGUSSA GmbH
    Inventors: Jürgen Herwig, Wilhelm Brügging, Martin Roos, Norbert Wilczok
  • Patent number: 8163170
    Abstract: Randomly packing with filler material at least part of a pass in a coil used in a system for pyrolyzing hydrocarbon feedstock to lighter hydrocarbons. Randomly packing increases heat transfer and decreases the rate of coke build-up within the coil, yielding an improvement in overall system efficiency. Packing material can comprise or be treated with a suitable catalyst for increasing the rate of chemical decomposition, thus further improving system efficiency.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 24, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Cor Franciscus van Egmond, Kandasamy Meenakshi Sundaram
  • Patent number: 8142644
    Abstract: A process for hydrocracking and hydro-isomerization of a paraffinic feedstock obtained by Fischer-Tropsch hydrocarbon synthesis comprising at least 50 wt % of components boiling above 370° C. to obtain a hydro-isomerized feedstock, the process comprising contacting the feedstock, in the presence of hydrogen, at elevated temperature and pressure with a catalyst comprising a hydrogenating compound supported on a carrier comprising amorphous silica-alumina, the carrier having a pore volume of at least 0.8 ml/g, wherein at most 40% of the pore volume comes from pores having a pore diameter above 35 nm and wherein at most 20% of the pore volume comes from pores having a pore diameter below 50 ? and above 37 ?, the carrier having a median pore diameter of at least 85 ?, wherein the product of (surface area per pore volume) and (median pore diameter as measured by mercury intrusion porosimetry) of the carrier is at least 34,000 ?·m2/ml.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: March 27, 2012
    Assignee: Shell Oil Company
    Inventors: Focco Kornelis Bijlsma, Jan Lodewijk Maria Dierickx, Arend Hoek
  • Patent number: 8143467
    Abstract: A process for the preparation of oligomeric poly alpha-olefins comprises oligomerizing low molecular weight PAO in the presence of an ionic liquid catalyst under oligomerization conditions. The low molecular weight PAOs used as a feed or feed component of the present process are the light olefinic by-product fraction including the dimers and light fractions from the metallocene-catalyzed PAO oligomerization process.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Abhimanyu Onkar Patil, Satish Bodige