Patents Examined by Bradley Etherton
  • Patent number: 8003839
    Abstract: The present invention relates to an in-line method for generating comonomer, from monomer, such as ethylene. The comonomer generated is stored prior to transporting to a polyethylene polymerization reactor. The in-line method includes the steps of providing an in-line comonomer synthesis reactor and a downstream gas/liquid phase separator prior to the polymerization reactor; feeding ethylene monomer and a catalyst in a solvent and/or diluent to the comonomer synthesis reactor; reacting the ethylene monomer and the catalyst in solvent and/or diluent under reaction conditions to produce an effluent stream including ethylene monomer and comonomer; passing the effluent stream from the comonomer synthesis reactor to the downstream gas/liquid phase separator to separate a gas stream from a bottom stream, wherein the gas stream is a mixture of ethylene monomer and comonomer; and passing the gas stream to the polymerization reactor to provide the necessary comonomer input.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 23, 2011
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Krishnan Sankaranarayanan, Milind B. Ajinkya, Stephen M. Wood, Anastasios I. Skoulidas, James R. Lattner, John F. Walzer
  • Patent number: 7999144
    Abstract: Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 16, 2011
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Terry Mazanec, Ravi Arora, Francis P. Daly, Richard Long, Thomas D. Yuschak, Paul W. Neagle, Amanda Glass
  • Patent number: 7989668
    Abstract: Nitrogen-containing Lewis bases act as poisons for molecular sieve catalysts used in oligomerisation reactions. A lowering of their presence in the feed prior to the contacting thereof with the molecular sieve brings a significant extension of catalyst life. Excessive elimination of these poisons may be disadvantageous. Lowering the levels of these catalyst poisons to more manageable concentrations is therefore preferred.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 2, 2011
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: John Stephen Godsmark, Georges Marie Karel Mathys, Hubertus Joseph Beckers, Charles Morris Yarbrough, Stephen Harold Brown, Yeo-Meng Lim
  • Patent number: 7989670
    Abstract: This invention relates to processes to produce liquid poly-alpha-olefins (PAOs) having a kinematic viscosity at 100° C. of more than 20 cSt in the presence of a metallocene catalyst with a non-coordinating anion activator and hydrogen.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: August 2, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang, Steven P. Rucker
  • Patent number: 7982085
    Abstract: The present invention relates to an in-line method for generating comonomer from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor. The in-line method includes the steps of providing an in-line comonomer synthesis reactor and a downstream gas/liquid phase separator prior to the polymerization reactor; feeding ethylene monomer and a catalyst in a solvent and/or diluent to the comonomer synthesis reactor; reacting the ethylene monomer and the catalyst in solvent and/or diluent under reaction conditions to produce an effluent stream including ethylene monomer and comonomer; passing the effluent stream from the comonomer synthesis reactor to the downstream gas/liquid phase separator to separate a gas stream from a bottom stream, wherein the gas stream is a mixture of ethylene monomer and comonomer; and passing the gas stream to the polymerization reactor to provide the necessary comonomer input.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Timothy D. Shaffer, James R. Lattner, John F. Walzer
  • Patent number: 7977520
    Abstract: Process for telomerizing noncyclic olefins having at least two conjugated double bonds with at least one nucleophile using a catalyst containing a metal of group 8, 9 or 10 of the Periodic Table of the Elements, wherein the overall telomerization process has a process step of catalyst recycling, in which hydrogen is added via a hydrogen source to the mixture present in this process step.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: July 12, 2011
    Assignee: EVONIX OXENO GmbH
    Inventors: Cornelia Borgmann, Dirk Roettger, Dagmara Ortmann, Reiner Bukohl, Stephan Houbrechts, Franz Nierlich
  • Patent number: 7977522
    Abstract: A process of producing olefins by a metathesis reaction in a practical low temperature range by improving the reactivity of the catalyst is provided. The process of producing olefins according to the present invention allows a metathesis reaction of olefins, which uses a catalyst containing metal elements such as tungsten, molybdenum, rhenium or the like, to proceed at an industrially sufficient reaction rate in a practical low temperature range, by using a compound containing at least one metal element selected from the metals of Group Ia (alkali metals), Group IIa (alkaline earth metals), Group IIb and Group IIIa as co-catalyst and allowing hydrogen gas to co-exist with the reaction raw material.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: July 12, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Takeshi Kubota
  • Patent number: 7956230
    Abstract: A method for reducing halide concentration in a hydrocarbon product made by a hydrocarbon conversion process using an ionic liquid catalyst comprising a halogen-containing an acidic ionic liquid comprising: (i) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst used in the hydrocarbon conversion process from the hydrocarbon product; (ii) contacting at least a portion of the separated hydrocarbon product with an ionic liquid catalyst having the same formula as the ionic liquid catalyst used in the hydrocarbon conversion process; (iii) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst of step (ii); and (iv) recovering at least a portion of the separated hydrocarbon product of step (iii) having a halide concentration less than the halide concentration of the hydrocarbon product of step (i) is disclosed.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 7, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Michael S. Driver, Thomas V. Harris
  • Patent number: 7956227
    Abstract: Methods of oligomerizing hydrocarbons are disclosed. These methods include contacting olefins with an oligomerization catalyst in an oligomerization zone under oligomerization reaction conditions.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: June 7, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bruce B. Randolph, Jason J. Gislason, M. Bruce Welch, Richard L. Anderson, Dhananjay B. Ghonasgi, Robert W. Morton, Roland Schmidt
  • Patent number: 7943038
    Abstract: Processes for producing one or more olefins are provided. In one or more embodiments, a doped catalyst can be prepared by fluidizing one or more coked-catalyst particles in the presence of one or more oxidants to provide a fluidized mixture. At least a portion of the coke can be removed from the coked-catalyst particles to provide regenerated catalyst particles. One or more doping agents can be distributed throughout the fluidized mixture, depositing on the surface of the regenerated catalyst particles to provide doped catalyst particles. One or more hydrocarbon feeds can be fluidized with the doped catalyst particles to provide a reaction mixture which can be cracked to provide a first product containing propylene, ethylene, and butane.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: May 17, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Pritham Ramamurthy
  • Patent number: 7928275
    Abstract: Process for the preparation of acetylene from hydrocarbons by partial oxidation, arc cleavage or pyrolysis, the material stream comprising the acetylene and soot obtained being fed to a compressor, wherein a liquid which takes up the major part of the soot present in the material stream is sprayed into the compressor.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: April 19, 2011
    Assignee: BASF SE
    Inventors: Michael Bachtler, Kai Rainer Ehrhardt, Christopher P Witte, Michael L. Hayes
  • Patent number: 7919659
    Abstract: A catalyst for production of a cycloolefin by partial hydrogenation of a monocyclic aromatic hydrocarbon, wherein the catalyst comprises zirconia as a carrier, and particles having an average primary particle diameter in a range of from 3 to 50 nm and an average secondary particle diameter in a range of from 0.1 to 30 ?m.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 5, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventor: Akiyoshi Fukuzawa
  • Patent number: 7902415
    Abstract: A process for dimerizing alpha olefins comprising contacting (i) an alpha olefin having at least 3 carbon atoms, (ii) a hexadentate bimetallic catalyst, and (iii) a cocatalyst, and dimerizing the alpha olefin in a reaction zone at conditions effective to dimerize an alpha olefin to form a reaction zone effluent comprising alpha olefin oligomers including alpha olefin dimers. A process for dimerizing olefins comprising contacting (i) an alpha olefin having at least 3 carbon atoms, (ii) a hexadentate bimetallic complex comprising a cobalt compound, and (iii) a cocatalyst, and dimerizing the alpha olefin in a reaction zone at conditions effective to dimerize an alpha olefin to form a reaction zone effluent comprising oligomers including dimmers, wherein greater than 20 weight percent of the alpha olefin has been converted to oligomers, greater than 30 weight percent of the oligomers are dimers, and greater than 85 mole percent of the dimers are linear.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 8, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Brooke L. Small
  • Patent number: 7880047
    Abstract: The invention is directed to polyalphaolefins (PAOs) and processes for forming PAOs. In one embodiment, the invention is to a process for forming a PAO comprising polymerizing C8-C12 ?-olefin monomers in the presence of hydrogen, a C8-C12 saturated hydrocarbon, e.g., a C8-C12 saturated straight-chain hydrocarbon, and a catalyst system in a reaction vessel, wherein the C8-C12 saturated straight-chain hydrocarbon has about the same number of carbon atoms as the C8-C12 ?-olefin monomers. The C8-C12 saturated straight-chain hydrocarbon optionally is derived from a crude PAO product formed by the process of the invention. The invention is also directed to reaction systems for performing the processes of the invention, to processes for controlling PAO viscosity based on residence time, and to the removal of spent catalyst using a solid adsorbent particles.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: February 1, 2011
    Assignee: Chemtura Corporation
    Inventors: Daniel C. Knowles, Jesus R. Fabian, Vilen Vilan Kosover, Susan Ferrarotti, E. Brian Fox, Frank DeBlase
  • Patent number: 7880046
    Abstract: Water reacts on molecular sieve catalysts used in oligomerization reactions and forms oxygenated compounds, in particular organic acids that may cause corrosion problems downstream of the reactor, in particular in distillation tower overhead systems and downstream thereof. A lowering of the presence of water in the feed prior to contacting thereof with the molecular sieve brings a significant reduction in corrosion downstream. At the same time, it has a significant beneficial effect on catalyst activity and brings a significant extension of catalyst life. Lowering water in the feed is particularly effective when organic nitrogen-containing Lewis bases are present in the feed, even at low levels.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Godsmark, Georges M. K. Mathys, Hubertus J. Beckers, Raphael F. Caers, Roger Eijkhoudt, Stephen H. Brown
  • Patent number: 7875754
    Abstract: A method of operation for producing high yield of alkylate product using catalytic reactors. The catalytic reactors which cycle between reaction mode and catalyst regeneration mode have their contents exchanged with each other at the beginning of each cycle in order to increase the yield of the desired product. This exchange increases the yield by minimizing the contact of reactant in reaction mode with regenerant utilized in regeneration mode. Thus, reducing/preventing the undesirable alternate reaction between the two, which consumes the reactant making it unavailable for the production of the desired product.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: January 25, 2011
    Assignee: Lummus Technology Inc.
    Inventor: Vincent James D′Amico
  • Patent number: 7858833
    Abstract: The present invention relates to a method for preparing linear alpha olefin comonomers, such as 1-butene, 1-hexene or 1-octene, from ethylene monomer. The comonomer generated is stored on site for use in a subsequent process, such as a polyethylene polymerization reactor. The method includes the steps of feeding an ethylene monomer, and a catalyst in a solvent to one or more comonomer synthesis reactors; reacting the ethylene monomer and the catalyst in solvent under reaction conditions to produce an effluent stream comprising unreacted ethylene monomer, a catalyst in a solvent, and comonomer; passing the effluent stream to one or more downstream gas/liquid phase separators to form a gas stream of unreacted ethylene monomer, and a liquid stream of comonomer, and catalyst in a solvent; recycling to the one or more comonomer synthesis reactors the unreacted ethylene monomer and a portion of the liquid stream; and storing a remaining portion of said liquid stream for subsequent processing of the comonomer.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Krishnan Sankaranarayanan, Milind B. Ajinkya, Stephen M. Wood, Anastasios Skoulidas
  • Patent number: 7847140
    Abstract: A process is disclosed for making higher olefins by oligomerization of a lower olefin e.g ethylene, to higher olefins, using catalytic distillation conditions. Simultaneously and interdependently, the lower olefin is catalytically oligomerized to higher olefins, and said higher olefins are separated and recovered as liquid.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 7, 2010
    Inventor: Karl Chuang
  • Patent number: 7816571
    Abstract: The use of a layered catalyst composition to selectively hydrogenate C5-C11 diolefins in a hydrocarbon mixture to one or more respective C5-C11 monoolefins is disclosed. The layered catalyst comprises an inner core having a first inorganic oxide and an outer layer bonded to the inner core. The outer layer has a non-refractory second inorganic oxide with at least one Group 1-2 metal and at least one Group 8-10 metal dispersed thereon.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Gregory J. Gajda
  • Patent number: 7781634
    Abstract: A process for the removal of aromatic compounds from an olefin feed to a paraffin alkylation is disclosed. The process may include feeding a olefin and aromatic containing hydrocarbon stream and a dilute alkylate product stream comprising alkylate product and unreacted material from the paraffin alkylation to a distillation zone and removing the unreacted material as overheads and removing a more concentrated alkylate product stream and a portion of the aromatic compounds as bottoms resulting in an improved alkylation process.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: William M. Cross, Jr.