Patents Examined by Brian J. Sines
  • Patent number: 10845284
    Abstract: A droplet-based microfluidic rheometer system and method of use for real-time viscosity monitoring of blood coagulation is disclosed. Droplets of blood samples are generated in a microfluidic rheometer, and the size of the droplets is highly correlated to the sample viscosity. The size of the droplets can be determined optically using an inverted light microscope and a camera or using electrodes. The microfluidic rheometer systems provides viscosity measurements in less than a second and consumes less than 1?{umlaut over (?)} blood or plasma over an hour period. The viscosity measurements may be displayed and transmitted to the Internet or cloud storage.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: November 24, 2020
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Yunzi Li, Kevin R. Ward, Mark A. Burns
  • Patent number: 10837959
    Abstract: A system and method for detecting harmful substances within a consumable sample comprising: receiving a consumable sample at a first chamber of a test container; transforming the consumable sample into a homogenized sample upon processing of the consumable sample; delivering the homogenized sample to a second chamber of the test container, wherein the second chamber is configured to receive the homogenized sample comprises an outlet port; mixing the homogenized sample with a process reagent within the second chamber, thereby producing a dispersion; transmitting a volume of the dispersion to an analysis chamber, of the test container, configured to position a detection substrate proximal the port of the second chamber and comprising a detection window that enables detection of presence of the allergen; and detecting presence of the allergen within the consumable sample by way of an optical sensor configured to detect signals indicative of the allergen through the detection window.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 17, 2020
    Assignee: Nima Acquisition, LLC
    Inventors: Scott Sundvor, Steven Portela, Jonathan Ward, John Walton, Jonathan William Kiel, Jeffrey Mekler, Shireen Yates, Jacob Mooney
  • Patent number: 10835899
    Abstract: A deterministic lateral displacement array that includes a channel, within a substrate, having a first sidewall, a second sidewall, and a channel length. A condenser portion that includes an entry port and an exit port. A first array of pillars is disposed between the entry port and the exit port of the condenser portion along the channel length, the first array of pillars operative to drive a first material particle and a second material particle towards the first sidewall of the channel. A separator portion that includes an entry port and an exit port, and a second array of pillars disposed between the entry port and the exit port of the separator portion along the channel length, the pillars operative to drive the first material particle towards the second sidewall of the channel.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huan Hu, Sung Cheol Kim, Joshua T. Smith, Benjamin H. Wunsch
  • Patent number: 10837440
    Abstract: A delivery system for a sensor chip includes a plurality of selectable ports and a two-way pump port selectively connectable to each of the selectable ports. The two-way pump port is configured to allow material to be drawn or delivered from or to the two-way pump port. The delivery system also includes a chamber and a bypass waste channel that is selectively connectable to the two-way pump port. The plurality of selectable ports includes a selectable chamber port connected to the chamber and the chamber has a chamber waste exit. Material may selectively flow through the chamber to a waste collection via the chamber waste exit or flow to the waste collection via the bypass waste channel that bypasses the chamber waste exit.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: November 17, 2020
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Robert A. Yuan
  • Patent number: 10828638
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: November 10, 2020
    Assignee: Emulate, Inc.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 10828639
    Abstract: A fluid exit passage is at a location along a microfluidic channel. A fluid displacement device is proximate the location along the microfluidic channel. A constituent locator distinguishes a target constituent in a fluid within the microfluidic channel from remaining non-target constituents and locate the target constituent proximate the fluid exit passage. A controller selectively actuates the fluid displacement device when the target constituent is proximate the fluid exit passage to discharge the target constituent from the microfluidic channel through the fluid exit passage.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: November 10, 2020
    Assignee: Hewlett-Packard Development Company L.P.
    Inventors: Anita Rogacs, Alexander Govyadinov
  • Patent number: 10830672
    Abstract: The present invention provides an apparatus for collecting and detecting liquid samples comprising a first chamber and a second chamber. The first chamber is used for collecting liquid samples for initial detection, and the second chamber is used for collecting liquid samples for second confirmatory detection. The first chamber and second chamber of the apparatus are detachable. When a second confirmatory detection is necessary, the second chamber can be separated from the first chamber, and then sent to a detection agency for confirmatory detection. It can avoid the contamination of liquid samples caused by contacting with test strip of a traditional apparatus; thus, it can effectively reduce the space required for storing liquid samples and greatly reduce the risk of leakage of liquid sampled during transportation.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 10, 2020
    Assignee: Hangzhou Biotest Biotech Co., LTD.
    Inventors: John Wu, Liang Hong, Yangyu Zhu, Lorraine C. Cogan, Shujiang Wu
  • Patent number: 10821438
    Abstract: A microfluidic product utilizing gradient surface energy coatings for fluid control comprising a plurality of fluid passages wherein at least one fluid passage comprises a coating configured to control liquid flow wherein the coating configured to control liquid flow comprises a gradient surface energy coating from a proximal location to a distal location on a surface of the fluid passage. The product can include uniform regions and surface gradient regions in the same passage. Coating compositions and product dimensions can be selected to provide control over different flow properties including fluid velocity, reduction and acceleration of fluid flow, and starting and stopping fluid flow.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: November 3, 2020
    Inventor: Brian David Babcock
  • Patent number: 10823645
    Abstract: The present invention provides, among other things, devices, methods and applications of collecting, preserving, transporting, and analyzing tiny body fluids which have targeted biomarkers.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: November 3, 2020
    Assignee: Essenlix Corporation
    Inventors: Stephen Y. Chou, Wei Ding, Yufan Zhang, Ji Qi
  • Patent number: 10814323
    Abstract: According to aspects of the present invention, a cartridge assembly for transporting fluid into or out of one or more fluidic devices includes a first layer and a second layer. The first layer includes a first surface. The first surface includes at least one partial channel disposed thereon. The second layer abuts the first surface, thereby forming a channel from the at least one partial channel. At least one of the first layer and the second layer is a resilient layer formed from a pliable material. At least one of the first layer and the second layer includes a via hole. The via hole is aligned with the channel to pass fluid thereto. The via hole is configured to pass fluid through the first layer or the second layer substantially perpendicularly to the channel. Embossments are also used to define aspects of a fluidic channel.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 27, 2020
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Daniel Levner, Guy Thompson, II, Christopher David Hinojosa
  • Patent number: 10809254
    Abstract: Provided herein are methods of splitting droplets containing magnetically responsive beads in a droplet actuator. A droplet actuator having a plurality of droplet operations electrodes configured to transport the droplet, and a magnetic field present at the droplet operations electrodes, is provided. The magnetically responsive beads in the droplet are immobilized using the magnetic field and the plurality of droplet operations electrodes are used to split the droplet into first and second droplets while the magnetically responsive beads remain substantially immobilized.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: October 20, 2020
    Assignee: ADVANCED LIQUID LOGIC, INC.
    Inventors: Vamsee K. Pamula, Ramakrishna Sista, Vijay Srinivasan, Michael G. Pollack, Allen E. Eckhardt
  • Patent number: 10807093
    Abstract: The present invention relates to a fluid conduit system and manufacture thereof, for the propulsion of fluids. The micro- or millifluidic system is useful within LOC, POC diagnostics digital ELISA, drug delivery applications or sampling. The system includes a capillary pump and a fluid conduit operationally connected to the pump, and a gas-permeable liquid-sealed unit with a vent hole gas-permeable to the outside. The fluid conduit includes a first conduit zone prefilled or pre-Tillable with a first volume of trigger liquid, upstream of the unit with the vent hole, a third conduit zone with a further volume, upstream of the capillary pump, and a second conduit zone pre-filled or pre-Tillable with a working liquid between the first and third conduit zones, connected to both, and directly connected to the first conduit zone. The first volume is proportionally larger than or equal to the volume of the third conduit zone.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 20, 2020
    Assignee: KATHOLIEKE UNIVERSITEIT LEUVEN
    Inventors: Jaroslav Belotserkovsky, Francesco Dal Dosso, Tadej Kokalj, Jeroen Lammertyn
  • Patent number: 10801980
    Abstract: Provided is an impedance measuring device for biological samples including one or a plurality of biological sample holding units configured to hold a biological sample, an applying unit configured to apply an AC voltage to a pair of electrodes in contact with the biological sample held by the biological sample holding unit, a measuring unit configured to measure an impedance of the biological sample obtained by an AC voltage being applied to the biological sample by the applying unit, and a measurement condition control unit configured to control a measuring time and/or a measuring frequency in the measuring unit.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: October 13, 2020
    Assignee: Sony Corporation
    Inventors: Marcaurele Brun, Kazumasa Sato
  • Patent number: 10801054
    Abstract: The present invention provides, inter alia, a device comprising a colorimetric detection layer configured to undergo a color change upon interaction with a first analyte of interest. The detection layer comprises a first plurality of self-assembled fiber bundles. At least a fraction of the fiber bundles undergo a change from a first conformation to a second conformation upon interaction with the first analyte of interest, thereby undergoing a color change. The invention also provides a method for using the system to detect an analyte of interest.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: October 13, 2020
    Assignee: The Regents of the University of California
    Inventors: Seung-Wuk Lee, Woo-Jae Chung, Jin-Woo Oh
  • Patent number: 10794814
    Abstract: The present disclosure includes provides methods for analyzing biological samples to identify, classify, and/or quantify platelets in the sample. The present disclosure also provides systems and methods for analyzing a blood sample to determine presence of platelet clumps in the sample. Also provided are systems configured for performing the disclosed methods and computer readable medium storing instructions for performing steps of the disclosed methods.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: October 6, 2020
    Assignee: Abbott Laboratories
    Inventor: Martin Krockenberger
  • Patent number: 10794904
    Abstract: Provided herein is a sensing apparatus comprising, at least one LSPR light source, at least one detector, and at least one sensor for LSPR detection of a target chemical. The sensor comprises a substantially transparent, porous membrane having nanoparticles immobilized on the surface of its pores, the nanoparticles being functionalized with one or more capture molecules. There is further provided a self-referencing sensor for distinguishing non-specific signals from analyte binding signals. The self-referencing sensor comprising one or more nanoparticles having at least two distinct LSPR signals.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 6, 2020
    Assignee: Nicoya Lifesciences Inc.
    Inventors: Ryan Cameron Denomme, John Alexander Gordon Dick, Sarah Ann Leblanc
  • Patent number: 10792658
    Abstract: A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 6, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Eric D. Hobbs, Justin K. Valley
  • Patent number: 10788451
    Abstract: An analysis instrument comprises plural modules connected together over a data network, each module comprising an analysis apparatus operable to perform biochemical analysis of a sample. Each module comprises a control unit that controls the operation of the analysis apparatus. The control units are addressable to select an arbitrary number of modules to operate as a cluster for performing a common biochemical analysis. The control units communicate over the data network, repeatedly during the performance of the common biochemical analysis, to determine the operation of the analysis apparatus of each module required to meet the global performance targets, on the basis of measures of performance derived from the output data produced by the modules. The arrangement of the instrument as modules interacting in this manner provides a scalable analysis instrument.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Clive Gavin Brown, James Peter Willcocks
  • Patent number: 10782232
    Abstract: A Quality Control (QC) material for performing a QC procedure with respect to at least one detector is introduced. The QC material comprises at least one first QC substance and at least one second QC substance, wherein the first QC substance is interferable with the second QC substance or with the performance and/or lifetime of the detector and wherein the first QC substance is entrapped by carrier particles that prevent the first QC substance to interfere with the second QC substance or with the performance and/or lifetime of the detector. An in-vitro diagnostic system comprising a first detector and a second detector and the QC material is also introduced. An in-vitro diagnostic method comprising performing a QC procedure with respect to a first detector and/or to a second detector comprising providing the QC material is also introduced, as well as a method of manufacturing the QC material.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: September 22, 2020
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Sabrina Stevanovic, Rebecca Ravotti
  • Patent number: 10780438
    Abstract: An interfacial technique utilizes hydrodynamic micro-vortices to perform (i) high efficiency single cell encapsulation and (ii) size-selective capturing of cells based on their sizes in a single microfluidic device. A notable feature of this technique is that it can perform high efficiency single cell encapsulation at low cell concentrations, and this technique is all passive, controlled only by the flow rates of the two phases and does not require complex structures or on-chip active devices. Single bead/cell encapsulation was demonstrated at 50% efficiency, which is at least 10 times greater than the random encapsulations at the introduced cell concentrations. Also demonstrated is the selective trapping of cells based on their sizes. This present technique expands the capabilities of droplet microfluidics for applications ranging from single cell genomics, proteomic assays to sample preparation.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: September 22, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Gopakumar Kamalakshakurup, Abraham P. Lee