Patents Examined by Brian J. Sines
  • Patent number: 11872560
    Abstract: Microfluid chips that comprise one or more microscale and/or mesoscale condenser arrays, which can facilitate particle purification and/or fractionation, are described herein. In one embodiment, an apparatus can comprise a layer of a microfluidic chip. The layer can comprise an inlet that can receive fluid, an outlet that can output a purified version of the fluid, and a condenser array coupled between and in fluid communication with the inlet and the outlet. The condenser array can comprise a plurality of pillars arranged in a plurality of columns. Also, a pillar gap sized to facilitate a throughput rate of the fluid of greater than or equal to about 1.0 nanoliter per hour can be located between a first pillar of the plurality of pillars in a first column of the plurality of columns and a second pillar of the plurality of pillars in the first column.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: January 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joshua T. Smith, Stacey M. Gifford, Sung-Cheol Kim, Benjamin H. Wunsch
  • Patent number: 11873173
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: January 16, 2024
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 11865541
    Abstract: The presently disclosed subject matter provides dual-depth thermoplastic microfluidic devices, related kits, microfluidic systems comprising the dual-depth thermoplastic microfluidic device, methods of isolating nucleic acid analytes from a liquid sample, and methods of isolating extracellular vesicles from a liquid sample.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: January 9, 2024
    Assignee: BioFluidica, Inc.
    Inventors: Rolf Muller, Mateusz Hupert
  • Patent number: 11857967
    Abstract: In an embodiment, a microfluidic chip includes a capillary is disposed between upper and lower substrates, where the capillary includes a porous monolithic structure disposed within the capillary, and a clamp structure is defined within the channel and engages with the capillary. The clamp structure comprises a thermoplastic material that, when heated to a selected temperature, deforms around the capillary to secure the capillary in alignment with the channel. In another embodiment, a microfluidic chip includes a porous monolithic brick disposed between first and second substrates, where each of the first and second substrates includes a channel extending through the substrate to the brick structure to provide a fluid flow path through the each of the first substrate, the second substrate and the brick structure.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: January 2, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Donald Lad DeVoe, Jung Yeon Han
  • Patent number: 11859734
    Abstract: A microfluidic device has a first substrate, a resilient diaphragm, an actuator, and a second substrate. The first substrate has an opening extending therethrough. The resilient diaphragm is secured to a second side and surrounds the opening. The actuator is secured to a first side and surrounds the opening. The first substrate, the resilient diaphragm, and the actuator cooperate to form a gas-tight chamber. The second substrate has a channel formed therein having a first end and a second end. The second substrate is secured to the first substrate. A volume of gas disposed in the gas-tight chamber pressurizes the gas-tight chamber and expands the resilient diaphragm such that the resilient diaphragm is disposed in the channel between the first end and the second end. The resilient diaphragm retracts from the channel to open the channel from the first end and the second when the gas-tight chamber is depressurized.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: January 2, 2024
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Aaron Kauffmann
  • Patent number: 11850584
    Abstract: A separation container for extracting a portion of a sample for use or testing and method for preparing samples for downstream use or testing are provided. The separation container may include a body defining an internal chamber. The body may define an opening, and the body may be configured to receive the sample within the internal chamber. The separation container may further include a seal disposed across the opening, such that the seal may be configured to seal the opening of the body, and a plunger movably disposed at least partially inside the internal chamber. The plunger may be configured to be actuated to open the seal and express the portion of the sample.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: December 26, 2023
    Assignees: bioMerieux, Inc., BioFire Defense, LLC
    Inventors: Christopher S. Ronsick, Kirk Ririe, Mark S. Wilson, John D. Walsh, Ryan T. Hill
  • Patent number: 11850594
    Abstract: The invention discloses microparticle multi-channel time-sharing separation device and method based on an arcuate interdigital transducer. An arcuate interdigitated electrode is connected to an output channel of a signal generator. The arcuate interdigitated electrode and a polydimethylsiloxane (PDMS) microfluidic channel are placed on a lithium niobate chip. The arcuate interdigitated electrode is mainly formed by an interdigitated electrode being asymmetrically bent from a straight line into an arcuate curve. Two electrode ends of the arcuate interdigitated electrodes are asymmetrically arranged with one end big and another end small. The PDMS microfluidic channel includes a main flow channel, two inlet ends, and multiple outlet ends. The main flow channel is an approximately arcuate flow channel arranged around an outer side of the arcuate interdigitated electrode. Particles are patterned in a coverage section of surface acoustic waves to complete separation of microparticles.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: December 26, 2023
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Yancheng Wang, Chengyao Xu, Deqing Mei, Chenyang Han
  • Patent number: 11850591
    Abstract: A method of manufacturing an outlet section of a microfluidic device configured to sample, meter and collect a metered volume of body fluid for analysis by means of capillary transport; the method comprising: providing a microfluidic device having an outlet section in fluid communication with a metering section comprising a metering channel configured to receive body fluid from an inlet section with an inlet port, wherein the outlet section comprises a cavity between an outlet part of the metering channel and an outlet orifice of the device; providing a hydrophilic porous bridge element arranged to conform to the shape of the cavity; inserting the bridge element into the cavity, such that the bridge element substantially fills the cavity and the outlet orifice; and attaching a capillary means to the outlet section, thereby establishing contact between the capillary means and the bridge element.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: December 26, 2023
    Assignee: CAPITAINER AB
    Inventors: Anna Ohlander, Gabriel Lenk
  • Patent number: 11846281
    Abstract: A delivery system for a sensor chip includes a plurality of selectable ports and a two-way pump port selectively connectable to each of the selectable ports. The two-way pump port is configured to allow material to be drawn or delivered from or to the two-way pump port. The delivery system also includes a chamber and a bypass waste channel that is selectively connectable to the two-way pump port. The plurality of selectable ports includes a selectable chamber port connected to the chamber and the chamber has a chamber waste exit. Material may selectively flow through the chamber to a waste collection via the chamber waste exit or flow to the waste collection via the bypass waste channel that bypasses the chamber waste exit.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: December 19, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Robert A Yuan
  • Patent number: 11839876
    Abstract: An apparatus for microfluidic flow cytometry analysis of a particulate containing fluid An apparatus for microfluidic flow cytometry analysis of a particulate containing fluid comprises a hydrodynamic focussing apparatus for providing a focused stream of particulate containing fluid; and a microfluidic chip. The chip has a plurality of layers and comprises a microfluidic channel that extends through the chip substantially orthogonal to a plane of the layers of the chip, and is in fluid communication with the hydrodynamic focusing apparatus for receipt of a focused steam of particulate containing fluid. The chip also comprises a detection zone comprising at least one pair of electrodes in electrical communication with the microfluidic channel.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: December 12, 2023
    Assignee: Cellix Limited
    Inventors: Dmitry Kashanin, Igor Shvets, Francesco Dicorato
  • Patent number: 11833512
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 5, 2023
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 11833513
    Abstract: A microfluidic device comprising: an inlet section, for receiving a body fluid sample, the inlet section comprising an inlet port arranged to receive a supply of body fluid; a metering function configured to receive body fluid from the inlet section and comprising a first channel; and a sequent section configured to receive the body fluid from the metering function and comprising a second channel, wherein the first channel comprises a capillary stop valve configured to interrupt or reduce flow of the body fluid therethrough, and a means for visual inspection arranged adjacent to the capillary stop valve, wherein a geometry and/or dimension of the inlet port is configured such that when the supply of body fluid to the inlet port is removed, the Laplace pressure of a body fluid meniscus at the inlet port is higher than a threshold pressure of the capillary stop valve.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: December 5, 2023
    Assignee: CAPITAINER AB
    Inventors: Gabriel Lenk, Anna Ohlander
  • Patent number: 11834641
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: December 5, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11821884
    Abstract: The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: November 21, 2023
    Assignees: STMICROELECTRONICS S.r.l., STMICROELECTRONICS PTE LTD
    Inventors: Malek Brahem, Hatem Majeri, Olivier Le Neel, Ravi Shankar, Enrico Rosario Alessi, Pasquale Biancolillo
  • Patent number: 11813606
    Abstract: The present disclosure provides better aspiration and dispensing of liquids by an innovative mechanism by (i) offsetting the diameter of a bottom tube with a narrower and tapered top piston when the two are moved together in the same chamber to give extremely fine resolution, thereby eliminating the need for any skinny or filamentous piston, (ii) using thick walled compliant O-rings to seal against the different diameters of the tapered piston to given an additional order of magnitude range of resolution, (iii) letting the bottom tube move in the chamber alone without offset to give high flow, and (iv) an at-the-ready space between the tube and piston in the chamber to permit contact-free blowoff, including viscous samples.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: November 14, 2023
    Inventor: Henry Donald Schwartz
  • Patent number: 11813612
    Abstract: Methods include treating a portion of a sample composition to be tested for presence of an analyte by depleting or blocking the target analyte. The treated composition may be used to equilibrate an acoustic wave sensor prior to exposing the sensor to the untreated sample composition for analysis. By using the treated sample composition, in which the analyte is depleted or blocked, to equilibrate the sensor, the sensor may be equilibrated with a composition having a similar viscosity and non-specific binding characteristics to the untreated sample composition, which should result in improved accuracy when analyzing the analyte in the untreated sample composition.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: November 14, 2023
    Inventor: Ian Harmon
  • Patent number: 11808723
    Abstract: The present disclosure is directed to a gas sensor device that includes a plurality of gas sensors. Each of the gas sensors includes a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. Each of the SMO films is designed to be sensitive to a different gas concentration range. As a result, the gas sensor device is able to obtain accurate readings for a wide range of gas concentration levels. In addition, the gas sensors are selectively activated and deactivated based on a current gas concentration detected by the gas sensor device. Thus, the gas sensor device is able to conserve power as gas sensors are on when appropriate instead of being continuously on.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: November 7, 2023
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Malek Brahem, Hatem Majeri, Olivier Le Neel, Ravi Shankar
  • Patent number: 11806709
    Abstract: All interface component (40), suitable for cooperating with a microfluidic device (1), the interface component comprising, one or more elements (41) which can be selectively connected to a pneumatic system (71 a,71 b) which can provide a positive and/or negative air flow to the one or more elements (41); wherein each of the one or more elements 141) comprises, an input port (42) which can be selectively fluidly connected to a pneumatic system (71 a,71 b); and a flow restrictor (43) according to a further aspect of the present invention; the flow restrictor (43) being arranged in fluid communication with the input port (42), wherein the flow restrictor (43) can restrict the flow of fluid through the element (41); and an aerosol filter (49) which is arranged to be in fluid communication with the flow restrictor (43); and wherein the interface component (40) further comprises one or more outlets (45), each of the one or more outlets (45) being in fluid communication with a respective element (41), so that fluid
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: November 7, 2023
    Inventor: Daniel Schaffhauser
  • Patent number: 11806715
    Abstract: A method for moving an aqueous droplet comprising providing an electrokinetic device including a first substrate having a matrix of electrodes, wherein each of the matrix electrodes is coupled to a thin film transistor, and wherein the matrix electrodes are overcoated with a functional coating comprising: a dielectric layer in contact with the matrix electrodes, a conformal layer in contact with the dielectric layer, and a hydrophobic layer in contact with the confornial layer; a second substrate comprising a top electrode; a spacer disposed between the first substrate and the second substrate and defining an electrokinetic workspace; and a voltage source operatively coupled to the niatrix electrodes. The method further comprises disposing an aqueous droplet on a first matrix electrode; and providing a differential electrical potential between the first matrix electrode and a second matrix electrode with the voltage source, thereby moving the aqueous droplet.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: November 7, 2023
    Assignee: Nuclera Ltd
    Inventors: Michael Chun Hao Chen, Sumit Kalsi, Laurence Livingstone Bell, Gordon Ross McInroy, David Zhitomirsky, Luke M. Slominski, Richard J. Paolini, Jr., Cristina Visani
  • Patent number: 11796472
    Abstract: The present technology is directed to the nanoparticles for use as molecular environmental sensors. The nanoparticles comprise a photoluminescence core and a plurality of ligands bound to the core and forming a quencher permeable ligand shell. The ligands comprise a reactive or charged moiety capable of being modulated between a first stand and a second state, and the proportion of ligands in each state determine the permeability of the ligand shell to a photoluminescence quencher.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: October 24, 2023
    Assignee: Northwestern University
    Inventors: Chen He, David J. Weinberg, Emily A. Weiss, Jeremiah Yoonsung Kim, Chen Wang, Andrew Lee