Patents Examined by Brian Walck
  • Patent number: 7718156
    Abstract: Carbon nanostructures are formed from a carbon precursor and catalytic templating nanoparticles. Methods for manufacturing carbon nanostructures generally include (1) forming a precursor mixture that includes a carbon precursor and a plurality of catalytic templating particles, (2) carbonizing the precursor mixture to form an intermediate carbon material including carbon nanostructures, amorphous carbon, and catalytic metal, (3) purifying the intermediate carbon material by removing at least a portion of the amorphous carbon and optionally at least a portion of the catalytic metal, and (4) heat treating the purified intermediate carbon material and/or treating the purified intermediate carbon material with a base to remove functional groups on the surface thereof. The removal of functional groups increases the graphitic content of the carbon nanomaterial and decreases its hydrophilicity.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Martin Fransson, Bing Zhou
  • Patent number: 7687048
    Abstract: Processing schemes and arrangements for the amine treatment of high olefin content (e.g., ethylene-rich) carbon dioxide-containing streams such as for the effective separation and removal of carbon dioxide therefrom are provided. Corresponding or associated processing schemes and arrangements for the catalytic cracking of a heavy hydrocarbon feedstock and obtaining light olefins substantially free of carbon dioxide via absorption-based product recovery are also provided.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Gavin P. Towler, John P. Brady, William J. Lechnick
  • Patent number: 7682589
    Abstract: Method for industrial manufacture of pure MgCO3 comprising providing an olivine containing species of rock, to comminute the olivine containing species of rock to increase its surface, to contact the comminuted olivine containing species of rock with water and CO2. The process is conducted in at least two steps, namely a first step (R1) at a first pH where a dissolving reacting as represented the equation: Mg2SiO4(S)+4H+=2Mg2++SiO2(aq)+2H2O, takes place. Then a precipitation takes place in the second step (R2) at a higher pH as represented by the equations: Mg2++HCO3?=MgCO3(S)+H+, and Mg2++CO32?=MgCO3(S), the presence of HCO3? and H+ ions mainly provided by the reaction between CO2 and water.
    Type: Grant
    Filed: November 23, 2006
    Date of Patent: March 23, 2010
    Assignee: Institutt for Energiteknikk
    Inventors: Oddvar Gorset, Harald Johansen, Jan Kihle, Ingrid Anne Munz, Arne Raaheim
  • Patent number: 7682581
    Abstract: The purpose of the invention is to remove copper selectively from a concentrated zinc sulphate solution by ion exchange. The method enables a significant reduction in the use of zinc powder during the solution purification of zinc sulphate solution and makes possible to avoid usage of arsenic or antimony trioxides as a precipitation chemical. The method is to be combined with the chloride removal that occurs as a sub-stage of solution purification.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: March 23, 2010
    Assignee: Outotec Oyj
    Inventors: Leena Lehtinen, Marko Lahtinen, Marika Jyrälä, Matti Vuokko
  • Patent number: 7615202
    Abstract: An object of the invention is to provide a method for producing a large amount of inexpensive high purity silicon useful for a solar battery. Disclosed is a method for producing high purity silicon by migrating impurities in silicon to slag including performing a first slag purification of a first silicon, separating the slag from the first silicon after finishing the first slag purification, and feeding the separated slag to a second molten silicon in a second purification of the second silicon, wherein purity of said second silicon prior to purification is lower than purity of the first silicon after purification.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: November 10, 2009
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventor: Nobuaki Ito
  • Patent number: 7572418
    Abstract: A process for production of titanium concentrate with low contents of radionuclide elements from anatase mechanical concentrates. The process involves calcination in air and reduction with hydrogen or any other reducing gas, both in fluidized bed reactor or rotary kiln, low-intensity magnetic separation of the reduced product, high-intensity magnetic separation of the non-magnetic fraction resulting from the low-intensity magnetic separation, hydrochloric acid leaching of the product of high-intensity magnetic separation, filtering and dewatering of the leached product, high temperature oxidation of the dewatered material, cooling of the oxidized ore, hydrochloric acid leaching of the oxidation product in the presence of sodium fluoride, filtration and drying of the product of the second leaching and high intensity magnetic separation, the non-magnetic fraction of this final magnetic separation becoming the end product.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: August 11, 2009
    Assignee: Companhia Vale do Rio Doce
    Inventors: Ronaldo De Moreira Horta, Lino Rodrigues De Freitas, João Alberto Lessa Tude
  • Patent number: 7553381
    Abstract: A metal film according to the present invention has a cubic crystal structure having a periodic pattern of crystal orientation in a plane. The crystal orientation is gradually rotated about a particular crystal-axis direction such that a {100} plane, a {110} plane, and a {111} plane appear.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: June 30, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akemi Ishizaki, Isao Kimura, Mitsuru Otsuka