Patents Examined by Brian Walck
  • Patent number: 7931855
    Abstract: A method of reducing the oxygen content of a powder is provided. A canister is prepared with a getter, filled with the powder to be densified, sealed and evacuated. The canister is subjected to a hydrogen atmosphere at an elevated temperature whereby hydrogen diffuses into the canister through the walls thereof. The hydrogen forms moisture when reacted with the oxygen of the powder and the moisture in the reacted with the getter in order to remove oxygen from the powder to the getter. The atmosphere outside the canister is then altered to an inert atmosphere or vacuum, whereby hydrogen diffuses out of the canister. A dense body having a controlled amount of oxygen can thereafter be produced by conventional powder metallurgy techniques.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: April 26, 2011
    Inventors: Roger Berglund, Hans Eriksson, Johan Sundstrom, Per Arvidsson
  • Patent number: 7906449
    Abstract: The present invention is a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst The catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i) but the component (iii).
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: March 15, 2011
    Assignee: N.E. Chemcat Corporation
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Patent number: 7887771
    Abstract: Methods for manufacturing carbon nanostructures include 1) forming intermediate carbon nanostructures by polymerizing a carbon precursor in the presence of templating nanoparticles, 2) carbonizing the intermediate carbon nanostructures to form an intermediate composite nanostructure, and 3) removing the templating nanoparticles from the intermediate composite nanostructure to form carbon nanorings. The carbon nanorings manufactured using the foregoing steps have one or more carbon layers forming a wall that defines a generally annular nanostructure having a hole. The length of the nanoring is less than or about equal to the outer diameter thereof. The carbon nanostructures are well-suited for use as a fuel cell catalyst support. The carbon nanostructures exhibit high surface area, high porosity, high graphitization, and facilitate mass transfer and electron transfer in fuel cell reactions.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 15, 2011
    Assignees: Headwaters Technology Innovation, LLC, Dalian Institute
    Inventors: Gongquan Sun, Shuihua Tang, Shiguo Sun, Qin Xin, Changkun Liu, Bing Zhou
  • Patent number: 7888284
    Abstract: An absorbent includes a ferromagnetic nucleus with a one-layer or two-layer shell or devoid thereof and the nucleus is embodied in the form of a plate with a planar size that ranges from 500-5000 ?m and the thickness is equal to 0.1-1000 ?m. The method for producing the inventive magnetically-operated absorbent includes evaporating and/or melting a magnetic material powder in a low-temperature plasma, quenching and condensing the thus obtained vaporized and/or melt-particle product in a gas flux, and transferring the product precipitated in the form of crystals or micro slugs of corresponding metals, correspondingly to a stabilizer-containing dispersion medium and holding in the medium until a gas release is over. Then the crystals or micro slugs are processed by flattening, for example pressing so that the plates of a specified thickness are obtained.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 15, 2011
    Assignees: Evgeny Pavlovich Germanov, Mikhail Vladimirovich Kutushov
    Inventor: Mikhail Vladimirovich Kutushov
  • Patent number: 7887772
    Abstract: The present invention discloses an ultrafine graphitic carbon fiber and a preparation method thereof. An ultrafine fiber having a diameter of 1 to 3000 nm is prepared by electrospinning a halogenated polymer solution containing a metal compound inducing graphitization. In carbonization, an ultrafine porous graphitic carbon fiber having a large specific surface area, micropores and macropores is prepared by the graphitization by a metal catalyst generated from the metal compound. The ultrafine carbon fiber can be used as a carbon material for storing hydrogen, an adsorbing material of biochemically noxious substances, an electrode material of a supercapacitor, a secondary cell and a fuel cell, and a catalyst carrier material.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: February 15, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Seong-Mu Jo, Dong-Young Kim, Byung-Doo Chin, Sung-Eun Hong
  • Patent number: 7871564
    Abstract: In order to obtain a high purity sputtered film for a capacitor electrode of a semiconductor memory and to make the sputtered film have uniform thickness and good adhesiveness with Si substrate, a high-purity Ru alloy target is provided, wherein a total content of the platinum group elements excluding Ru is in a range of 15 to 200 wtppm and remnants are Ru and inevitable impurities. Also, provided is a manufacturing method of the high-purity Ru alloy target, comprising the steps of mixing Ru powder having a purity of 99.9% or higher and powder of platinum group elements excluding Ru, performing press molding of the mixed powder to obtain a compact, performing electron beam melting of the compact to obtain an ingot, and forging the ingot at 1400 to 1900° C.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: January 18, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Gaku Kanou, Yuichiro Shindo
  • Patent number: 7867462
    Abstract: A method and system for controlling emissions with ammonia recovery and fly ash beneficiation in accordance with the present invention includes introducing ammonia to react with at least a portion of sulfur trioxides in an exhaust emission and result in at least one or more ammoniated compounds. At a least a portion of fly ash particles and the ammoniated compounds in the exhaust emission are precipitated and at least the precipitated fly ash particles are beneficiated. At least a portion of the beneficiated fly ash particles which are heated are mixed with the precipitated ammoniated compounds to recover at least a portion of the ammonia. The recovered ammonia is reused in introducing ammonia to react with at least a portion of sulfur trioxides.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: January 11, 2011
    Assignee: PMI Ash Technologies, LLC
    Inventor: Joseph W. Cochran
  • Patent number: 7868242
    Abstract: A thermoelectric conversion module includes a tubular element unit having a plurality of ring-like thermoelectric elements coaxially arranged with air as an insulator sandwiched inbetween. The ring-like thermoelectric element is covered approximately entirely with electrodes at its outer circumference surface and inner circumference surface, respectively, and generates electricity by temperature difference between the outer circumference surface and the inner circumference surface. A lead wire electrically connects the electrode covered on the outer circumference surface of one ring-like thermoelectric element among the plurality of ring-like thermoelectric elements to the electrode covered on the inner circumference surface of another ring-like thermoelectric element adjacent to the one ring-like thermoelectric element.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 11, 2011
    Assignee: Universal Entertainment Corporation
    Inventor: Koh Takahashi
  • Patent number: 7858065
    Abstract: The present invention provides a process for producing supported ruthenium, which comprises recovering a ruthenium compound from supported ruthenium used as a catalyst in production of chlorine by oxidation of hydrogen chloride with oxygen, and supporting the ruthenium compound on a carrier; and a process for producing chlorine, which comprises producing a supported ruthenium catalyst by the process mentioned above and oxidizing hydrogen chloride with oxygen in the presence of the supported ruthenium.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: December 28, 2010
    Assignee: Sumitomo Chemical Company, Ltd.
    Inventor: Kohei Seki
  • Patent number: 7850796
    Abstract: An aluminum alloy fin material for brazing, characterized by comprising an aluminum alloy comprising more than 1.4% by mass but not more than 1.8% by mass of Fe, 0.8% by mass or more but 1.0% by mass or less of Si, and more than 0.6% by mass but not more than 0.9% by mass of Mn, with the balance being Al and inevitable impurities, wherein 80% or more of the surface area, as viewed from the surface layer of the fin plane, is occupied by recrystallized grains with a length of 10 mm or more, in a direction rolled.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: December 14, 2010
    Assignees: Denso Corporation, Furukawa-Sky Aluminum Corp.
    Inventors: Kyoji Inukai, Tomohiro Ito, Akira Kawahara, Akio Niikura
  • Patent number: 7829496
    Abstract: The present invention discloses a method for preparing platinum (Pt) based nano-size catalyst which is useful as an electrode catalyst of a direct methanol fuel cell (DMFC). This method includes the implementation of a reduction reaction of a platinum precursor and an optional ad-metal precursor with a reducing agent in a solvent and in the presence of a stabilizer to form a suspension containing colloidal particles of platinum or platinum/ad-metal; mixing the suspension with a co-solvent; subjecting the resultant mixture to a centrifugal treatment to form a platinum or platinum/ad-metal colloidal particle portion and a liquid portion, repeating the co-solvent mixing and centrifugal treatment to the platinum or platinum/ad-metal colloidal particle portion until the resultant liquid portion no longer contains the product of the reduction reaction; and drying the resultant platinum or platinum/ad-metal colloidal particle portion to obtain a platinum based nano-size catalyst.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: November 9, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Man-Yin Lo, I-Hsuan Liao
  • Patent number: 7824641
    Abstract: Provided herein is a new material, periodic mesoporous phosphorus-nitrogen compound, which may be used in a variety of emerging technologies. Its surface properties render it promising as a component in a variety of applications, including gas separation and purification systems in which waste gases such as SO2, SO3, or CO2 are separated from other gases. It may also be used as an interlayer dielectric in microelectronic chips. Its structure and composition are useful due to an advantageous and favorable combination of thermal stability, elastic modulus, and dielectric properties. The surface properties and the regularity of the pores furthermore provides utility as shape selective base catalysts. Protonated forms of the material are expected to be useful as a solid acid, and in applications such as acid catalysis. Additionally, because of the thermal behavior of the material, it is useful as “hard” template for other porous materials, without the need of an external reagent.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 2, 2010
    Assignee: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty
  • Patent number: 7824651
    Abstract: The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 2, 2010
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Jinjun Shi, Jiusheng Guo, Bor Z. Jang
  • Patent number: 7799148
    Abstract: Iron-carbon-manganese austenitic steel sheet, the chemical composition of which comprises, the contents being expressed by weight: 0.45%?C?0.75%; 15%?Mn?26%; Si?3%; Al?0.050%; S?0.030%; P?0.080%; N?0.1%; at least one metal element chosen from vanadium, titanium, niobium, chromium and molybdenum, where 0.050%?V?0.50%; 0.040%?Ti?0.50; 0.070%?Nb?0.50%; 0.070%?Cr?2%; 0.14%?Mo?2%; and, optionally, one or more elements chosen from 0.0005%?B?0.003%; Ni?1%; Cu?5%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the amounts of said at least one metal element in the form of precipitated carbides, nitrides or carbonitrides being: 0.030%?Vp?0.150%; 0.030%?Tip?0.130%; 0.040%?Nbp?0.220%; 0.070%?Crp?0.6%; 0.14%?Mop?0.44%.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: September 21, 2010
    Assignee: Arcelor France
    Inventors: Colin Scott, Philippe Cugy, Maurita Roscini, Anne Dez, Dominique Cornette
  • Patent number: 7799293
    Abstract: Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dean R. Peterman, John R. Klaehn, Mason K. Harrup, Richard D. Tillotson, Jack D. Law
  • Patent number: 7780943
    Abstract: A compound oxide powder producing method for producing compound oxide powder made of at least two kinds of metals. A solution, in which a first metal compound for producing, when hydrolyzed, a hydroxide or oxide is dissolved in an organic solvent, and an emulsion, which contains another metal in the form of ions in an aqueous phase inside of inverse micelles formed by a surfactant in an organic solvent, are individually mixed in flowing states. The mixed liquid is stirred while being continuously caused to flow to the downstream side of a mixing portion of the first solution and the emulsion. Primary particles are formed by the hydrolysis of the first metal compound inside or in the interface of the inverse micelles whereas secondary particles are formed by the agglomeration of the primary particles.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: August 24, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Patent number: 7754172
    Abstract: The present invention relates to a process for purifying a gas mixture G-0 comprising dinitrogen monoxide, at least comprising the absorption of the gas mixture G-0 in an organic solvent, subsequent desorption of a gas mixture G-1 from the laden organic solvent, absorption of the gas mixture G-1 in water and subsequent desorption of a gas mixture G-2 from the laden water, and also to the use of a purified gas mixture which comprises dinitrogen monoxide and is obtainable by such a process as an oxidizing agent for olefins.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 13, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Joaquim Henrique Teles, Beatrice Roessler, Dieter Baumann
  • Patent number: 7740717
    Abstract: Provided is a tantalum sputtering target having a crystal structure in which the (222) orientation is preferential from a position 10% of the target thickness toward the center face of the target, and a manufacturing method of a tantalum sputtering target, including the steps of forging and recrystallization annealing, and thereafter rolling, a tantalum ingot or billet having been subject to melting and casting, and forming a crystal structure in which the (222) orientation is preferential from a position of 10% of the target thickness toward the center face of the target. As a result, evenness (uniformity) of the film is enhanced, and quality of the sputter deposition is improved.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: June 22, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Kunihiro Oda
  • Patent number: 7722848
    Abstract: Lithium iron phosphate cathode materials for lithium secondary batteries and methods of preparation thereof are disclosed. Better cathode materials may be produced by multiple annealing and/or heating steps. The annealing step can be carried out before and/or after the heating steps to provide cathode materials, which exhibit superior electrical properties. In some instances, divalent iron compounds are incorporated as starting materials.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: May 25, 2010
    Assignee: BYD Company Limited
    Inventors: Quan Dai, Julin Shen
  • Patent number: 7718155
    Abstract: Methods for manufacturing carbon nanostructures include: 1) forming a plurality of catalytic templating particles using a plurality of dispersing agent molecules; 2) forming an intermediate carbon nanostructure by polymerizing a carbon precursor in the presence of the plurality of templating nanoparticles; 3) carbonizing the intermediate carbon nanostructure to form a composite nanostructure; and 4) removing the templating nanoparticles from the composite nanostructure to yield the carbon nanostructures. The carbon nanostructures are well-suited for use as a catalyst support. The carbon nanostructures exhibit high surface area, high porosity, and high graphitization. Carbon nanostructures according to the invention can be used as a substitute for more expensive and likely more fragile carbon nanotubes.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Martin Fransson, Changkun Liu, Bing Zhou