Patents Examined by Casey Kretzer
  • Patent number: 9973282
    Abstract: Methods and systems for a distributed optoelectronic receiver are disclosed and may include an optoelectronic receiver having a grating coupler, a splitter, a plurality of photodiodes, and a plurality of transimpedance amplifiers (TIAs). The receiver receives a modulated optical signal utilizing the grating coupler, splits the received signal into a plurality of optical signals, generates a plurality of electrical signals from the plurality of optical signals utilizing the plurality of photodiodes, communicates the plurality of electrical signals to the plurality of TIAs, amplifies the plurality of electrical signals utilizing the plurality of TIAs, and generates an output electrical signal from coupled outputs of the plurality of TIAs. Each TIA may be configured to amplify signals in a different frequency range. One of the plurality of electrical signals may be DC coupled to a low frequency TIA of the plurality of TIAs.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: May 15, 2018
    Assignee: Luxtera, Inc.
    Inventors: Brian Welch, Gianlorenzo Masini
  • Patent number: 9967032
    Abstract: Optical fiber-based distributed communications components and systems, and related methods to provide localization services for client devices are disclosed. The localization services allow the providing and/or determination of the location of client devices in communication with a component or components of the optical fiber-based distributed communications system. The location of client devices can be provided and/or determined based on knowledge of the location of the component or components in the optical fiber-based distributed communications system in communication with the client device. This information can be used to determine or provide a more precise area of location or area of location for client devices.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: May 8, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Kenneth Robert Baker, Michael Sauer
  • Patent number: 9960840
    Abstract: An optical line terminal is operable in a passive optical network. The optical line terminal includes a chassis. A plurality of optical subsystems are disposed within the chassis. Each optical subsystem is operable to generate optical signals for delivery to a port. Each optical subsystem includes one or more optical switches. When a fault condition is detected at a first optical subsystem preventing the delivery of first optical signals generated by the first optical subsystem to the port of the first optical subsystem, the optical switches switch to deliver second downstream optical signals generated by a second optical subsystem to the port of the first optical subsystem.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: May 1, 2018
    Assignee: ARRIS Enterprises LLC
    Inventors: Thomas J. Cloonan, David B. Bowler
  • Patent number: 9960846
    Abstract: A free-space optical communication system is provided. The free-space optical communication system includes a transmitter configured to optically transmit data in a plurality of subcarrier signals over a free-space scattering medium. The free-space optical communication system includes a coherent receiver configured to receive the plurality of subcarrier signals and extract the transmitted data from the plurality of subcarrier signals after traversal over the free-space scattering medium.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: May 1, 2018
    Assignee: LGS INNOVATIONS LLC
    Inventors: Thomas Huntington Wood, Stephan Frank Wielandy, Andrew Russell Grant
  • Patent number: 9948399
    Abstract: Methods and apparatus for removing beat interference from the splitting and/or combining of signals. In one embodiment, an active splitter/combiner receives multiple input optical signals from downstream communication resources via a number of individual point-to-point links. Each input optical signal is converted to an electric signal (which, unlike the input optical signals, do not share a characteristic wavelength). The resulting electrical signals can be combined without introducing beat interference. Once combined, the resulting aggregate signal is converted back to an optical format for transmission via the optical network. Various other aspects of the present disclosure are directed to active splitting of optical signals.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: April 17, 2018
    Assignee: Time Warner Cable Enterprises LLC
    Inventors: Paul D. Brooks, Peter H. Wolff
  • Patent number: 9941993
    Abstract: Example embodiments of the present invention relate to an optical node comprising of at least two degrees, a plurality of directionless add/drop ports, a plurality of primary WDM transmitters and receivers, and at least one protection WDM transmitter and receiver, wherein the at least one protection WDM transmitter and receiver can transmit and receive in place of any of the plurality of primary WDM transmitters and receivers.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 10, 2018
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9941957
    Abstract: Methods and systems for a connectionless integrated optical receiver and transmitter test are disclosed and may include an optoelectronic transceiver comprising a transmit (Tx) path and a receive (Rx) path, with each path comprising optical switches. The transceiver may be operable to: generate a first modulated optical signal utilizing a modulator in the Tx path, couple the first modulated optical signal to a first optical switch in the Rx path via a second optical switch in the Tx path when the optoelectronic transceiver is configured in a self-test mode, receive a second modulated optical signal via a grating coupler in the Rx path when the optoelectronics transceiver is configured in an operational mode, and communicate the second modulated optical signal to a photodetector in the Rx path via the first optical switch. The first modulated optical signal may be communicated to a grating coupler in the Tx path via the second optical switch.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: April 10, 2018
    Assignee: Luxtera, Inc.
    Inventor: Subal Sahni
  • Patent number: 9935728
    Abstract: Example embodiments of the present invention relate to an optical node comprising of at least two degrees, a plurality of directionless add/drop ports, a plurality of primary WDM transmitters and receivers, and at least one protection WDM transmitter and receiver, wherein the at least one protection WDM transmitter and receiver can transmit and receive in place of any of the plurality of primary WDM transmitters and receivers.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 3, 2018
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9935714
    Abstract: An apparatus, system and method for facilitating higher bandwidth communication in a data center using existing multi-mode fibers. A first transceiver within a first device transmits Ethernet traffic to a second device over first and second optical fibers and receives return optical signals over the same first and second optical devices. By varying the wavelengths between the transmitted and received optical signals, the same optical fibers can be used to both transmit and receive optical signals. A second transceiver within the same housing as the first transceiver performs the same function. In this fashion, one device can be coupled to four bidirectional optical fibers, each transmitting and receiving optical signals at 20 Gbps.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: April 3, 2018
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Luca Cafiero, Franco Tomada
  • Patent number: 9929827
    Abstract: This application provides a wavelength negotiation method of a multi-wavelength passive optical network, including: receiving a wavelength status table that is broadcast by an OLT over each downstream wavelength channel of a multi-wavelength PON system, where the wavelength status table is used to indicate information about available wavelengths of the multi-wavelength PON system and statistic information of registered ONUs of a corresponding wavelength channel; selecting an upstream transmit wavelength and a downstream receive wavelength according to the wavelength status table; and reporting information about the upstream transmit wavelength and information about the downstream receive wavelength to the OLT so that the OLT refreshes the wavelength status table. This application also provides a wavelength negotiation apparatus of the multi-wavelength passive optical network and a multi-wavelength passive optical network system.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: March 27, 2018
    Assignee: Huawei Technologies Co., Ltd
    Inventors: Bo Gao, Jianhe Gao
  • Patent number: 9923636
    Abstract: Disclosed embodiments relate to an interconnect structure for coupling at least one electronic unit for outputting and/or receiving electric signals, and at least one optical unit for converting said electric signals into optical signals and/or vice versa, to a further electronic component. The interconnect structure comprises an electrically insulating substrate and a plurality of signal lead pairs to be coupled between said electronic unit and a front end contact region for electrically contacting said interconnect structure by said further electronic component.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 20, 2018
    Assignee: Finisar Corporation
    Inventors: Andrei Kaikkonen, Lennart Lundquist, Lars-Goete Svensson, Robert Smith
  • Patent number: 9923641
    Abstract: An optical receiver (20) includes an electrical signal generation unit (200), a first phase compensation unit (101), a distortion compensation unit (102), and a first dispersion compensation unit (400). The electrical signal generation unit (200) generates an electrical signal on the basis of received signal light. The first phase compensation unit (101) performs a phase rotation compensation process on the electrical signal generated by the electrical signal generation unit (200). The distortion compensation unit (102) performs a dispersion compensation process and a phase rotation compensation process in this order, at least once, on the electrical signal after having compensation performed thereon by the first phase compensation unit. The electrical signal generation unit (200), the first phase compensation unit (101), and the distortion compensation unit (102) are incorporated into one semiconductor device.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 20, 2018
    Assignee: NEC CORPORATION
    Inventors: Wakako Yasuda, Junichi Abe, Daisaku Ogasahara
  • Patent number: 9923660
    Abstract: An optical add-drop multiplexer and a branching unit are provided, where implementation of the optical add-drop multiplexer includes: an optical processing component, a first combining device, a second combining device, and a second scrambler, where the optical processing component includes an input end, a first output end, a second output end, and a third output end; the first output end of the optical processing component is connected to a first input end of the second combining device, and the second output end of the optical processing component is connected an input end of the second scrambler; an output end of the second scrambler is connected to a second input end of the second combining device; and the third output end of the optical processing component is connected to a first input end of the first combining device.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 20, 2018
    Assignee: Huawei Marine Networks Co., Ltd.
    Inventor: Wendou Zhang
  • Patent number: 9912408
    Abstract: Methods and systems for silicon photonics wavelength division multiplexing transceivers are disclosed and may include, in a transceiver integrated in a silicon photonics chip: generating a first modulated output optical signal at a first wavelength utilizing a first electrical signal, generating a second modulated output optical signal at a second wavelength utilizing a second electrical signal, communicating the first and second modulated output optical signals into an optical fiber coupled to the chip utilizing a multiplexing grating coupler in the chip. A received input optical signal may be split into a modulated input optical signal at the first wavelength and a modulated input optical signal at the second wavelength utilizing a demultiplexing grating coupler in the chip. The first and second modulated input optical signals may be converted to first and second electrical input signals utilizing first and second photodetectors in the chip.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: March 6, 2018
    Assignee: Luxtera, Inc.
    Inventors: Attila Mekis, Peter De Dobbelaere, Lieven Verslegers, Peng Sun, Yannick De Koninck
  • Patent number: 9912407
    Abstract: An optical relay device is provided which is capable of outputting control signal light without equipping a light source for the control signal light and capable of flexibly managing and changing a wavelength of the control signal light in accordance with a state of a network. The optical relay device includes an optical receiving unit that receives a wavelength multiplexed optical signal, a control unit that specifies a first wavelength and outputting notification information, and a processing unit that selects an optical signal having the first wavelength from the received wavelength multiplexed optical signal, applying intensity-modulation in accordance with the notification information to the selected optical signal, adding the intensity-modulated optical signal back to the wavelength multiplexed optical signal, and outputting the wavelength multiplexed optical signal.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 6, 2018
    Assignee: NEC Corporation
    Inventor: Ryuji Aida
  • Patent number: 9900671
    Abstract: Example embodiments of the present invention relate to an optical signal processor comprising of at least one wavelength processing device, a plurality of optical amplifying devices, and a least one field programmable photonic device.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: February 20, 2018
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9900106
    Abstract: The present invention discloses a signal modulation method, including: demultiplexing an input signal into 2N sub-signals; grouping every two of the 2N sub-signals into a pair; performing filtering on two sub-signals in each pair; performing carrierless amplitude phase (CAP) modulation on the two sub-signals in each pair; modulating the two sub-signals in each pair to a same frequency band, to generate N pairs of CAP signals, where frequency bands of different pairs of sub-signals are different, and a spacing between center frequencies of two neighboring frequency bands is greater than or equal to an average value of baud rates of sub-signals corresponding to the two neighboring frequency bands; and combining the N pairs of CAP signals, and performing electro-optic modulation on a signal obtained after the combining. A signal demodulation method corresponding to the signal modulation method is further disclosed.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 20, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Tianjian Zuo
  • Patent number: 9900100
    Abstract: The present invention relates to an optical line terminal capable of communicating with a plurality of optical network units. The optical line terminal includes an obtaining unit that performs an obtaining process that obtains configuration information for each of the optical network units from another apparatus; and a configuring unit that performs a configuration process that transmits a part or all of the configuration information obtained by the obtaining unit to the each of the optical network units. The obtaining unit performs the obtaining process for each of the optical network units in an order determined according to a priority of the each of the optical network units.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: February 20, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kenjiro Fujino, Hideyuki Tanaka, Kazutaka Kawamoto
  • Patent number: 9900085
    Abstract: A transceiver can include a transmitter and a receiver. The transmitter can include: a primary laser emitter; a primary monitor photodiode optically coupled with the laser emitter; a spare laser emitter; and a transmitter integrated circuit having a primary channel operably coupled with the primary laser emitter; a spare channel operably coupled with the spare laser emitter; a switch on the primary channel; and a secondary channel operably coupled with the switch and the spare channel. The receiver can include: a primary detector photodiode; a spare detector photodiode; and a receiver integrated circuit a primary receiver channel operably coupled with the at least one primary detector photodiode; a spare receiver channel operably coupled with the spare detector photodiode; a receiver switch on the spare receiver channel; and a secondary receiver channel operably coupled with the receiver switch and the primary receiver channel.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 20, 2018
    Assignee: FINISAR CORPORATION
    Inventor: Frank J. Flens
  • Patent number: 9893808
    Abstract: A retail merchandising system includes a plurality of gondolas positioned in a retail space, a plurality of visible light communication (VLC) sources positioned in the retail space, and at least one VLC sensor disposed at a fixed location relative to each of the plurality of gondolas. The plurality of VLC sources and the at least one VLC sensor are configured to cooperatively identify a location of the gondolas in the retail space. With pre-stored planograms and the locations of the store gondolas, product locations can be readily determined.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 13, 2018
    Assignee: TARGET BRANDS, INC.
    Inventors: Christopher Olsen, Robert Gilman, Lew Price