Patents Examined by Casey Kretzer
  • Patent number: 9887797
    Abstract: An optical line terminal for use in a multi-wavelength network to operatively connect via a PON port by a first connection to a first network node and to operatively connect via the PON port by a second connection to a second network node, the optical line terminal being configured to operate under first network conditions by sending no data via the second connection, and to operate under second network conditions by sending data via the second connection.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 6, 2018
    Assignee: British Telecommunications Public Limited Company
    Inventor: Albert Rafel Porti
  • Patent number: 9887779
    Abstract: Optoelectronic oscillator systems and an optoelectronic oscillator noise reduction method. One example of an optoelectronic oscillator system includes an optical source positioned at a first end of a fiber-optic path, the optical source being configured to transmit an optical signal along the fiber-optic path, an optical modulator positioned to receive and modulate the optical signal based on at least a reference signal, a retro-reflector positioned at a second end of the fiber-optic path, the retro-reflector being configured to receive and retro-reflect the optical signal, the retro-reflected optical signal having at least a frequency range of inherent fiber noise canceled, and an optical circulator positioned along the fiber-optic path between the optical modulator and the retro-reflector, the optical circulator being configured to direct the optical signal to the retro-reflector and direct the retro-reflected optical signal along a feedback path to a first photodetector to generate the reference signal.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: February 6, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Andrew Kowalevicz
  • Patent number: 9882636
    Abstract: Embodiments of the present disclosure provide a monitoring apparatus for an optical signal to noise ratio, a signal transmission apparatus and a receiver. The monitoring apparatus includes a selecting unit configured to select a time domain, and/or frequency domain range for calculating noise power of received signals according to a location of a pilot signal in the received signals in a time domain and/or frequency domain, and a calculating unit configured to calculate the noise power of the received signals according to the received signals in the selected range of the time domain and/or frequency domain, and calculate an optical signal to noise ratio of the received signals according to the noise power. The optical signal to noise ratio may be accurately estimated, with a process of calculation being simple and a scope of application being relatively wide.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: January 30, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Liang Dou, Zhenning Tao
  • Patent number: 9882649
    Abstract: Provided are transmitting, receiving and communication systems of an optical network and a method for modulating a signal. The transmitting system includes: first Passive Optical Network (PON) equipment, configured to output a binary digital signal; and an M-order digital modulator, configured to modulate the binary digital signal into an M-order digital signal, and output the M-order digital signal, wherein each transmission symbol in the M-order digital signal carries information of N=log2M bits, where N is a natural number greater than 1 and M is a natural number. By the disclosure, the problems in the related art is solved, the bandwidths required by transmission are further reduced, and the actual cost of the optical transceiver modules is lowered.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: January 30, 2018
    Assignee: XI'AN ZHONGXING NEW SOFTWARE CO. LTD.
    Inventors: Songlin Zhu, Yong Guo, Yongjia Yin, Yang Gao, Guanjun Zeng, Dezhi Zhang, Weifeng Tong
  • Patent number: 9866317
    Abstract: Embodiments disclose a method and an apparatus for detecting power of an uplink optical signal, an optical line terminal, and an optical network system. The method includes: separately generating a triggering signal that is used for detecting optical power for each uplink optical signal among multiple uplink optical signals to be detected, where the triggering signal of each uplink optical signal has same duration. The method also includes separately detecting power of each uplink optical signal in the duration of the triggering signal of each uplink optical signal.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 9, 2018
    Assignee: Huawei Technologies Co., Ltd
    Inventors: Xiaofei Zeng, Sanzhong Li, Gang Zheng
  • Patent number: 9866320
    Abstract: Optical communication systems and methods using coherently combined optical beams are disclosed. A representative system includes a first data source for sending first data at a first frequency of a first optical beam to a first aperture, and at a second frequency of a second optical beam to a second aperture. The system further includes a second data source for sending second data at a third frequency of a third optical beam to the first aperture, and at a fourth frequency of a fourth optical beam to the second aperture. The system also includes a first interleaver of the first aperture configured to interleave the first data at the first frequency and the second data at the third frequency; and a second interleaver of the second aperture configured to interleave the first data at the second frequency and the second data at fourth frequency.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 9, 2018
    Assignee: Facebook, Inc.
    Inventor: Shih-Cheng Wang
  • Patent number: 9859979
    Abstract: A lighting device, according to one embodiment, comprises: a control unit for generating an on and off signal on the basis of information on a unique address; and a light source which emits light by the on and off signal generated through the control unit, and which emits visible light including the address information. According to the present embodiment, a user can arrange, under a desired lighting device to be registered, a device having map information on a place at which the lighting device is installed, and can receive a unique address transmitted by the lighting device by using visible light communication (VLC) according to the arranged device, thereby enabling the unique address of the lighting device to be easily confirmed even without the need for dismantling the lighting device installed on the ceiling.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 2, 2018
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Jin Soo Choi
  • Patent number: 9859984
    Abstract: A transmitter comprises a complex mixer to generate a single I analog drive signal and a single Q analog drive signal, and a single multi-dimensional optical modulator configured to modulate an optical carrier light using the single I analog drive signal and the single Q analog drive signal to produce a modulated optical signal for transmission. Alternatively, a transmitter comprises a complex mixer to generate two I analog drive signals and two Q analog drive signals, and a single multi-dimensional multiple-electrode optical modulator configured to modulate an optical carrier light using the analog drive signals to produce a modulated optical signal for transmission. In both transmitters, the optical carrier light is produced by a single laser, and frequency components of the first data signal are located in a different portion of a spectrum of the modulated optical signal than frequency components of the second data signal.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 2, 2018
    Assignee: Ciena Corporation
    Inventors: James Harley, Roger Carroll, Shahab Oveis Gharan, Kim B. Roberts
  • Patent number: 9838138
    Abstract: Techniques are described for determining pre-compensation parameters to compensate for signal integrity degradation along a signal path. A processor generates a first digital signal and receives a second digital signal. The second digital signal is generated from an optical-to-electrical conversion of a feedback optical signal that is generated from an electrical-to-optical conversion of an electrical signal by an optical module. The processor determines the pre-compensation parameters based on the first and second digital signals.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 5, 2017
    Assignee: Juniper Networks, Inc.
    Inventors: Murat Arabaci, Marianna Pepe, Massimiliano Salsi, Philip A. Thomas, David James Ofelt
  • Patent number: 9838112
    Abstract: An apparatus and method for providing a differential latency, DL, between an upstream, US, transmission and a downstream, DS, transmission via an optical transmission link (OTL), said apparatus comprising a measurement unit (2) configured to measure the round trip delays, RTD, of at least two measurement signals having different measurement wavelengths; and a processing unit (3) configured to derive an upstream, US, delay of at least one optical signal at an upstream wavelength from the at least two measured round trip delays, RTD, and to derive a downstream, DS, delay of at least one optical signal at a downstream wavelength from the at least two measured round trip delays, RTD, wherein the differential latency, DL, is calculated on the basis of the derived delays, RTD.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: December 5, 2017
    Assignee: ADVA OPTICAL NETWORKING SE
    Inventor: Klaus Grobe
  • Patent number: 9838119
    Abstract: A system and method for automatically steering an optical data signal from a transceiver of a base station to a selected mobile endpoint of a plurality of mobile endpoints in a virtual reality or an augmented reality space may include a tracking device that communicates with the base station to establish and track a current location of the selected mobile endpoint. A steering mechanism may steer an optical beam to the determined current location of the selected mobile endpoint and transmit the optical beam to the determined current location of the selected mobile endpoint to transmit an optical data signal to the selected mobile endpoint.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: December 5, 2017
    Assignee: GOOGLE LLC
    Inventors: Murphy Stein, Antonio Bernardo Monteiro Costa, Joshua Weaver
  • Patent number: 9838130
    Abstract: A bi-directional optical transceiver module includes: an optical transmission unit to output a transmission signal; an optical reception unit to receive a reception signal, the transmission signal and the reception signal having different corresponding first and second wavelength values within a single channel; a splitter, inclined with respect to an incident direction of the transmission signal output from the optical transmission unit, to transmit the transmission signal to an outside, and reflect optical signals input from the outside, the optical signals including the reception signal; and a reflected light-blocking optical filter unit to pass, as the reception signal among the optical signals reflected by the splitter, an optical signal within a preset wavelength range including the second wavelength value.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: December 5, 2017
    Assignees: SK TELECOM CO., LTD., LIGHTRON INC.
    Inventors: Hongman Kim, Wolyon Hwang, Youngun Heo, Yoonkoo Kwon, Jinsoo Choi, Kangyong Jung, Jaehyun Jin, Youngjoon Yoo, Jinsoo Sung, Jongyeong Lim, Sangsu Park
  • Patent number: 9831944
    Abstract: A probe generator includes: a first demultiplexer configured to branch a first optical signal having a first wavelength into at least two first polarized optical signals; a first adjustor configured to adjust the first polarized optical signals such that the first polarized optical signals have the same polarization direction and to combine the adjusted first polarized optical signals into a second optical signal; a first modulator configured to branch the second optical signal into at least two first split optical signals and to intensity-modulate each of the first split optical signals with first pilot signals; a second adjustor configured to adjust the first split optical signals intensity-modulated by the first modulator such that the intensity-modulated first split optical signals have different polarization directions; and an output unit configured to combine the first split optical signals adjusted by the second adjustor to generate a probe optical signal to be output.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: November 28, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Futoshi Izumi
  • Patent number: 9819417
    Abstract: The present invention can operate a reflective semiconductor optical amplifier at ultrahigh speed using a polar return-to-zero (RZ) modulation method, and operate a reflective semiconductor optical amplifier (RSOA) whose modulation bandwidth is limited at ultrahigh speed by generating signals vertically symmetrical using a newly suggested polar RZ signal generator when generating an amplitude modulation signal at a transmission end. The present invention can overcome the problem that a modulation speed cannot be increased to 10 Gb/s or above due to signal distortion by inter-symbol-interference when generating an ultrahigh speed amplitude modulation signal using an RSOA of low price having a very narrow modulation bandwidth in an RSOA-based optical network.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: November 14, 2017
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yun Chur Chung, Hyun Kyu Shim, Hoon Kim
  • Patent number: 9810848
    Abstract: A method and apparatus for operating an optical rotating joint (2); comprising: providing redundancy for camera sensor signals to be passed through an optical rotating joint (2) by: (i) passing signals from a plurality of camera sensors (28, 30) via an optical changeover switching arrangement (70) to the optical rotating joint (2); and/or (ii) passing signals for a plurality of camera sensors (28, 30) toward the camera sensors (28, 30) from the optical rotating joint (2) via an optical changeover switching arrangement (70). The signals may be sensor control signals or sensor output signals to/from a plurality of sensors (26, 28, 30), for example camera sensors. The apparatus may further comprise one or more wavelength division multiplexers (68, 94) and/or wavelength division demultiplexers (66, 95).
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: November 7, 2017
    Assignee: BAE SYSTEMS plc
    Inventors: Christopher Ralph Pescod, Mohammed Nawaz
  • Patent number: 9813164
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 7, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Patent number: 9810849
    Abstract: A method and apparatus for operating an optical rotating joint (2); comprising: routing optical signals through an optical rotating joint (2) by using a first optical circulator (64) on a first side of the optical rotating joint (2) to receive an optical signal and direct the optical signal onward to a first side of the optical rotating joint (2), and using a second optical circulator (93) on a second side of the optical rotating joint (2) to receive the optical signal from the second side of the optical rotating joint (2) and direct it onwards. The signals may be sensor control signals or sensor output signals to/from a plurality of sensors (26, 28, 30), for example camera sensors. The apparatus may further comprise one or more wavelength division multiplexers (68, 94) and/or wavelength division demultiplexers (66, 95).
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: November 7, 2017
    Assignee: BAE SYSTEMS plc
    Inventors: Christopher Ralph Pescod, Mohammed Nawaz
  • Patent number: 9800348
    Abstract: An apparatus comprises a front end configured to receive an optical signal, and convert the optical signal into a plurality of digital signals, and a processing unit coupled to the front end and configured to determine a best-match chromatic dispersion (CD) estimate in the optical signal by optimizing a cost function based on signal peaks of the plurality of digital signals.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 24, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Mahdi Zamani, Zhuhong Zhang, Chuandong Li
  • Patent number: 9788088
    Abstract: Example embodiments of the present invention relate to an optical signal processor comprising of at least one wavelength processing device, a plurality of optical amplifying devices, and a least one field programmable photonic device.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 10, 2017
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9780907
    Abstract: A matrix M indicating a minimum number of all optical paths between pairs of nodes may be generated in one embodiment using an algorithm for transitive closure. In various embodiments, different algorithms and methods may be used to generate matrix M. Once a convergent matrix M has been generated that attains transitive closure, any corresponding reachability matrix RM^a may be obtained from matrix M in a computationally efficient manner. Matrix M may be used to determine groups of potential regenerator placements and obtain end-to-end optical paths by selecting desired sequences of regenerators.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 3, 2017
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda