Patents Examined by Charlee Bennett
  • Patent number: 9371583
    Abstract: A deposition apparatus according to an exemplary embodiment of the present invention includes a plurality of reaction spaces, a plurality of plasma electrodes respectively disposed in the reaction spaces, a first plasma processor connected to at least two plasma electrodes, and a first plasma power source connected to the first plasma processor. The first plasma processor may include a plasma distributor or a plasma splitter.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: June 21, 2016
    Assignee: ASM GENITECH KOREA LTD.
    Inventors: Ki Jong Kim, Hyun Kyu Cho, Jin Su Lee, Se Yong Kim
  • Patent number: 9340865
    Abstract: A conveyance system 50A of a film-forming apparatus 20A includes a blowing roller 6 having a function of supplying a cooling gas toward a substrate 21. The blowing roller has the first shell 11 and the internal block 12. The first shell 11 has a plurality of first through holes 13 as a gas supply channel, and is rotatable in synchronization with the substrate 21. The internal block 12 is disposed inside the first shell 11. A manifold 14 is defined by the internal block 12 inside the first shell 11. The manifold 14 is formed so as to introduce the gas toward the plurality of first through holes 13 within the range of a holding angle. A clearance 15 facing the plurality of first through holes 13 outside the range of the holding angle is further formed inside the first shell 11. In the radial direction, the manifold 14 has a relatively large dimension, and the clearance 15 has a relatively small dimension.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: May 17, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazuyoshi Honda, Satoshi Shibutani, Yasuharu Shinokawa, Sadayuki Okazaki, Noriyuki Uchida, Noriaki Amo
  • Patent number: 9284643
    Abstract: A reactor for conducting vapor phase deposition process is disclosed. The reactor includes a reactive precursor reservoir beneath a powder reservoir and separated from it by valve means. A reactive precursor is charged into the reactive precursor reservoir and a powder is charged into the powder reservoir. The pressures are adjusted so that the pressure in the reactive precursor reservoir is higher than that of the powder reservoir. The valve means is opened, and the vapor phase reactant fluidized the powder and coats its surface. The powder falls into the reactive precursor reservoir. The apparatus permits vapor phase deposition processes to be performed semi-continuously.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 15, 2016
    Assignee: Pneumaticoat Technologies LLC
    Inventors: David M. King, Alan W. Weimer, Paul Lichty
  • Patent number: 9267208
    Abstract: A time-dependent substrate temperature to be applied during a plasma process is determined. The time-dependent substrate temperature at any given time is determined based on control of a sticking coefficient of a plasma constituent at the given time. A time-dependent temperature differential between an upper plasma boundary and a substrate to be applied during the plasma process is also determined. The time-dependent temperature differential at any given time is determined based on control of a flux of the plasma constituent directed toward the substrate at the given time. The time-dependent substrate temperature and time-dependent temperature differential are stored in a digital format suitable for use by a temperature control device defined and connected to direct temperature control of the upper plasma boundary and the substrate. A system is also provided for implementing upper plasma boundary and substrate temperature control during the plasma process.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: February 23, 2016
    Assignee: Lam Research Corporation
    Inventor: Rajinder Dhindsa
  • Patent number: 9263241
    Abstract: This disclosure describes systems, methods, and apparatuses for extinguishing electrical arcs in a plasma processing chamber. Once an arc is detected, the steady state voltage provided to the plasma processing chamber can be reduced, and the current being provided to the chamber decays below a steady state value as the arc is extinguished. When the current falls to or below a current threshold, the voltage can be ramped back up bringing the voltage and current back to steady state values. This technique enables power to return to a steady state level faster than traditional arc mitigation techniques.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: February 16, 2016
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Skip B. Larson, Kenneth E. Nauman
  • Patent number: 9252024
    Abstract: Described are apparatus and methods for processing semiconductor wafers so that a film can be deposited on the wafer and the film can be UV treated without the need to move the wafer to a separate location for treatment. The apparatus and methods include a window which is isolated from the reactive gases by a flow of an inert gas.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: February 2, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Hyman Lam, Nicholas R. Denny, Joseph AuBuchon, Mei Chang
  • Patent number: 9243327
    Abstract: A plasma CVD device comprises a vacuum vessel that houses a discharge electrode plate and a ground electrode plate to which is attached a substrate for thin film formation. The plasma CVD device has an earth cover at an interval from and facing the aforementioned discharge electrode plate; the aforementioned discharge electrode plate has gas inlets and exhaust outlets (which expel gas introduced through said gas inlets) that are connected at one end to equipment supplying raw gas for thin film formation and that open at the other end at the bottom face of the aforementioned discharge electrode plate; the aforementioned earth cover has second gas inlets corresponding to the aforementioned gas inlets, and second exhaust outlets corresponding to the aforementioned exhaust outlets. The plasma CVD device has an electric potential control plate disposed at an interval from and facing the aforementioned ground cover.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: January 26, 2016
    Assignee: Toray Industries, Inc.
    Inventors: Tsunenori Komori, Takao Amioka, Keitaro Sakamoto
  • Patent number: 9234278
    Abstract: The present disclosure relates to a guiding element for guiding gas flow within a chamber. The guiding element includes a structure, one or more inlets, an outlet, and a transportation region. The one or more inlets are formed on a first side of the structure. The inlets have inlet sizes selected according to a removal rate and to mitigate gas flow variations within the chamber. The outlet is on a second side of the structure, opposite the first side of the structure. The outlet has an outlet size selected according to the removal rate. The transportation region is within the structure and couples or connects the inlets to the outlet.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: January 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Hua Chou, Chih-Tsung Lee, Chia-Ho Chen, Chin-Hsiang Lin
  • Patent number: 9234280
    Abstract: A susceptor support shaft for an epitaxial growth apparatus capable of forming a high quality epitaxial film by suppressing in-plane resistance variation of the epitaxial film due to deflection of a susceptor, wherein the susceptor support shaft supports a susceptor at an underneath portion of the susceptor in an epitaxial growth apparatus. The susceptor support shaft includes a support column located substantially coaxial with a center of the susceptor; a plurality of arms extending radially from the support column to positions under a peripheral portion of the susceptor; an arm connecting member connecting tips of the arms next to each other; and support pins extending from the arm connecting member, thereby supporting the susceptor.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 12, 2016
    Assignee: SUMCO Corporation
    Inventors: Akihiko Shimizu, Fumihiko Kimura, Takeshi Masuda
  • Patent number: 9230846
    Abstract: Wafer carriers and methods for moving wafers in a reactor. The wafer carrier may include a platen with a plurality of compartments and a plurality of wafer platforms. The platen is configured to rotate about a first axis. Each of the wafer platforms is associated with one of the compartments and is configured to rotate about a respective second axis relative to the respective compartment. The platen and the wafer platforms rotate with different angular velocities to create planetary motion therebetween. The method may include rotating a platen about a first axis of rotation. The method further includes rotating each of a plurality of wafer platforms carried on the platen and carrying the wafers about a respective second axis of rotation and with a different angular velocity than the platen to create planetary motion therebetween.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: January 5, 2016
    Assignee: Veeco Instruments, Inc.
    Inventors: Adrian Celaru, Todd A. Luse, Ajit P. Paranjpe, Joseph Scandariato, Qingfu Tang
  • Patent number: 9175419
    Abstract: This invention provides gas injector apparatus that extends into a growth chamber in order to provide more accurate delivery of thermalized precursor gases. The improved injector can distribute heated precursor gases into a growth chamber in flows that are spatially separated from each other up until they impinge on a growth substrate and that have volumes adequate for high-volume manufacture. Importantly, the improved injector is sized and configured so that it can fit into existing commercial growth chambers without hindering the operation of mechanical and robot substrate-handling equipment used with such chambers. This invention is useful for the high-volume growth of numerous elemental and compound semiconductors, and particularly useful for the high-volume growth of Group III-V compounds and GaN.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 3, 2015
    Assignee: SOITEC
    Inventors: Chantal Arena, Christiaan J. Werkhoven, Ronald Thomas Bertram, Jr., Ed Lindow, Dennis L. Goodwin
  • Patent number: 9175388
    Abstract: A reaction chamber assembly for thin film deposition processes or the like includes an outer wall assembly for enclosing an outer volume and a removable liner installed into the outer volume through an outer aperture for preventing precursors or reactants from coming into contact with internal surfaces of the outer wall assembly and forming thin film layers thereon. The removable liner encloses a reaction chamber and includes substrate support trays or the like for supporting substrates being coated. Thin film layers are formed onto internal surfaces of the removable liner instead of onto surfaces of the outer wall assembly. The removable liner may be disposable or may comprise stainless steel, which can be removed when contaminated, cleaned by abrasive blasting such as bead blasting, and replaced. Two removable liners can be used to periodically swap removable liners and clean one of the liners while the other is in service with minimal disruption to production coating schedules.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: November 3, 2015
    Assignee: Ultratech, Inc.
    Inventors: Roger R. Coutu, Jill S. Becker, Douwe J. Monsma
  • Patent number: 9169562
    Abstract: Described is a parallel batch CVD system that includes a pair of linear deposition chambers in a parallel arrangement and a robotic loading module disposed between the chambers. Each chamber includes a linear arrangement of substrate receptacles, gas injectors to supply at least one gas in a uniform distribution across the substrates, and a heating module for uniformly controlling a temperature of the substrates. The robotic loading module is configured for movement in a direction parallel to a length of each of the chambers and includes at least one cassette for carrying substrates to be loaded into the substrate receptacles of the chambers. The parallel batch CVD system is suitable for high volume processing of substrates. The CVD processes performed in the chambers can be the same process. Alternatively, the CVD processes may be different and substrates processed in one chamber may be subsequently processed in the other chamber.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: October 27, 2015
    Assignee: Singulus MOCVD GMBH I. GR.
    Inventors: Piero Sferlazzo, Darren M. Simonelli
  • Patent number: 9136148
    Abstract: A process gas supply cycle pattern that will adversely affect the result of processing is changed beforehand. Based on information supplied from a setting input section, a pattern computation section obtains the result of computation of a process gas supply cycle pattern that includes a rotation cycle of a substrate rotation mechanism, a supply cycle of a process gas, a supply time of the process gas, and a supply count of the process gas. Based on information supplied from the setting input section, a simulator simulates the shape of a supply region of the process gas to be supplied onto a substrate. A comparison section compares the result of computation of the process gas supply cycle pattern determined by the pattern computation section against the result of referencing of a process gas supply cycle pattern that adversely affects the result of processing and is obtained from a storage section.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: September 15, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Kazuhisa Matsuda
  • Patent number: 9121096
    Abstract: Embodiments of the invention generally relate to a concentric gas manifold assembly used in deposition reactor or system during a vapor deposition process. In one embodiment, the manifold assembly has an upper section coupled to a middle section coupled to a lower section. The middle section contains an inlet, a manifold extending from the inlet to a passageway, and a tube extending along a central axis and containing a channel along the central axis and in fluid communication with the passageway. The lower section of the manifold assembly contains a second manifold extending from a second inlet to a second passageway and an opening concentric with the central axis. The tube extends to the opening to form a second channel between the tube and an edge of the opening. The second channel is concentric with the central axis and is in fluid communication with the second passageway.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: September 1, 2015
    Assignee: Alta Devices, Inc.
    Inventor: Andreas Hegedus
  • Patent number: 9117857
    Abstract: In a plasma processing apparatus, a ceiling electrode plate provided to face a substrate holding stage via a process space contacts and is supported by an electrode support by interposing a cooling plate, and a heat-transfer sheet is provided in a contact surface between the ceiling electrode plate and the cooling plate. The heat-transfer sheet has thermal conductivity of 0.5 to 2.0 W/m·K. The heat-transfer sheet is provided of a heat-resistant adhesive agent or a rubber including silicon, or the heat-transfer sheet is formed of a ceramic filler including oxide, nitride, or carbide. The ceramic filler of 25 to 60 volume % is contained in the heat-resistant adhesive agent or the rubber. A thickness of the heat-transfer sheet is in a range between 30 and 80 ?m, and the heat-transfer sheet is not provided in a predetermined area around gas holes of the ceiling electrode plate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 25, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Yoshiyuki Kobayashi
  • Patent number: 9111980
    Abstract: Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 18, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David K. Carlson, Michael R. Rice, Kartik B. Shah, Kashif Maqsood, Pravin K. Narwankar
  • Patent number: 9103030
    Abstract: In a film deposition apparatus, a first separation gas is discharged from a separation gas supplying portion to a separation area between a first process area to which a first reaction gas is supplied and a second process area to which a second reaction gas is supplied. A heater is provided to heat the turntable by radiation heat. An outer sidewall member is provided in a bottom part of a vacuum chamber to surround the turntable in an area where the heater is provided. A space forming member is provided between the separation areas adjacent to each other in a rotating direction of the turntable and extending from the outer sidewall member to form a narrow space between the turntable. A purge gas flows from a lower side of the turntable to an area outside the turntable in a radial direction through the narrow space.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 11, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Manabu Honma
  • Patent number: 9096930
    Abstract: An apparatus for fabricating thin film photovoltaic devices includes a deposition chamber for loading a pair of substrates. Two heater platens in a side-by-side configuration with a middle gap form intimate contact with the pair of substrates. Each heater platen has a second width and a second length respectively made smaller than the first width and the first length to allow the substrate to fully cover the heater platen for preventing formation of edge lip due to coating buildup in a peripheral edge region. The apparatus further includes a shield structure which covers both the middle gap and all outer peripheral side regions of the side-by-side configuration of the two heater platens for preventing coating buildup and guiding a downstream flow.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 4, 2015
    Assignee: Stion Corporation
    Inventors: Kenneth B. Doering, Robert D. Wieting
  • Patent number: 9076826
    Abstract: A plasma confinement ring assembly with a single movable lower ring can be used for controlling wafer area pressure in a capacitively coupled plasma reaction chamber wherein a wafer is supported on a lower electrode assembly and process gas is introduced into the chamber by an upper showerhead electrode assembly. The assembly includes an upper ring, the lower ring, hangers, hanger caps, spacer sleeves and washers. The lower ring is supported by the hangers and is movable towards the upper ring when the washers come into contact with the lower electrode assembly during adjustment of the gap between the upper and lower electrodes. The hanger caps engage upper ends of the hangers and fit in upper portions of hanger bores in the upper ring. The spacer sleeves surround lower sections of the hangers and fit within lower portions of the hanger bores. The washers fit between enlarged heads of the hangers and a lower surface of the lower ring.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: July 7, 2015
    Assignee: Lam Research Corporation
    Inventors: Anthony de la Llera, David Carman, Travis R. Taylor, Saurabh J. Ullal, Harmeet Singh