Patents Examined by Charles J Han
  • Patent number: 8825383
    Abstract: Embodiments relate to determining commute routes and clustering commute routes from a user's location history. Points in the user's location history may be clustered to find the user's home and work locations. Additionally, points along the user's commute may be identified to determine the user's typical commute. Similar commutes can be clustered together, and used to suggest various services to the user.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: September 2, 2014
    Assignee: Google Inc.
    Inventors: Andrew Kirmse, Tushar Udeshi, Pablo Bellver, James Shuma, Matthieu Devin
  • Patent number: 8818675
    Abstract: A method for ascertaining the speed of a motor vehicle with the aid of wheel rotational speed sensors. To improve the calculation of the vehicle speeds on the basis of the wheel speeds, a first group of wheels of the motor vehicle is decelerated and a second group of wheels of the motor vehicle is simultaneously accelerated.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 26, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Martin Schlemmer, Rafael Seiler
  • Patent number: 8818637
    Abstract: An occupant classification system classifies occupants on a vehicle seat and is capable of separating child seats from adults during wet seat cases. In the system, the seat structure is grounded. The classification system includes a measurement circuit, an identifying circuit, and a controller. The measurement circuit is configured to measure in-phase and quadrature components of a current sent out to the sensing element. The identifying circuit is configured to identify if a seat pan and a seat back frame of the vehicle seat are grounded to a circuit ground. The controller is configured to use measurements of the measurement circuit to classify the occupant. The sensing element can be located in a sensing mat that further includes a heating element.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 26, 2014
    Assignee: TK Holdings Inc.
    Inventors: James G. Stanley, George Theos, Phil Maguire, Don McDonald
  • Patent number: 8818722
    Abstract: A method includes generating current coarse edge count representation based on current fine grid representation of current section, correlating current edge quantity values of current coarse pixels with historical edge quantity values of historical coarse pixels of historical coarse edge count representation of environment, and identifying first subsection of historical coarse edge count representation with highest correlation to current coarse edge count representation. Each current coarse pixel in current coarse edge count representation represents current fine pixels from current fine grid representation. Fine grid representation of current section of environment is based on data from range and attitude sensor. Each current coarse pixel within current coarse edge count representation includes current edge quantity value that represents quantity of current fine pixels represented by current coarse pixel that include edge.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Honeywell International Inc.
    Inventors: Michael R. Elgersma, Yunqian Ma
  • Patent number: 8812223
    Abstract: System and methods are provided alerting an aircraft crew member of a runway assignment for an aircraft takeoff sequence from a runway of an airport having a plurality of runways. In an embodiment, the method includes transmitting data comprising data relating to the runway assignment and data relating to an open status or a closed status for each airport runway to an aircraft data receiver, and transmitting an audio signal indicating the runway assignment to an aircraft audio receiver. In another embodiment, the method includes receiving an audio signal indicating the runway assignment from a control tower audio transmitter, receiving data comprising data relating to the runway assignment and data relating to an open status or a closed status of each of the airport runways from a control tower data transmitter, processing the received data, and displaying the received data relating to the runway assignment on a display.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: August 19, 2014
    Assignee: Honeywell International Inc.
    Inventors: Billy J. Durham, Brian J. Smith
  • Patent number: 8798929
    Abstract: In a navigation apparatus, HOV information related to a high-occupancy vehicle lane or carpool lane is added into node data of a node as a part of the node data in map data. The HOV information of all nodes in a highway in a guide route is acquired from the map data to calculate the total number of transfer permit points. When it is determined that a guide for HOV is possible based on the calculated total number of transfer permit points, and then it is determined that an entry distance from the present position to a nearest transfer permit point is in a predetermined range suitable for an entrance guide into the carpool lane, the entry distance is determined to be suitable for the entrance guide into the carpool lane. Thereby the entrance guide into the carpool lane is provided.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: August 5, 2014
    Assignee: DENSO CORPORATION
    Inventors: Kenji Tsuji, Daisuke Tomita, Yasuhiro Shimizu
  • Patent number: 8789643
    Abstract: A motor control apparatus includes an electric motor, a homing control section, a distance determination section, and a forbiddance section. The electric motor moves a control object equipped to a vehicle at least between two positions. The homing control section executes a homing control for controlling the electric motor to move the control object so that the control object press-contacts a stopper wall when an initialization condition is satisfied. The distance determination section determines whether a user of the vehicle is apart from the vehicle at a distance greater than a predetermined distance. The forbiddance section forbids the homing control during a period, which starts at a time of the homing control execution and ends at a time when the user of the vehicle is apart from the vehicle farther than the predetermined distance, even when the initialization condition is satisfied during the period.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: July 29, 2014
    Assignee: Denso Corporation
    Inventors: Tomoya Iwami, Katsuki Ishigaki, Kenji Shimizu
  • Patent number: 8783130
    Abstract: When an accelerator opening angle has reached an accelerator opening angle threshold value APS1 corresponding to a boundary of a range in which a fuel consumption is relatively deteriorated, a pedal effort of accelerator pedal 2 is increased by a pedal effort increment with respect to a base pedal effort. Even in a case where the accelerator pedal is pushed back to reduce the accelerator opening angle due to an increase in pedal effort when the accelerator opening angle exceeds the accelerator opening angle threshold value APS1, cancellation of pedal effort increment is inhibited to thereby ensure suppression of rattling of accelerator pedal 2 contrary to the driver's intention.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 22, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigeyuki Sakaguchi, Masao Shiomi, Masahiro Omori
  • Patent number: 8761995
    Abstract: Provided is a vehicle motion control system that comprises a plurality of vehicle behavior control units that are controlled in a mutually coordinated manner, and is configured to operate as designed even when one of the vehicle motion control units should fail. If a RTC-ECU (61) has ceased a control action thereof owing to a failure thereof, a VSA-ECU (31) retains the last received coordination control signal from the RTC-ECU in EEPROM (37) so that the VSA-ECU (31) is enabled to continue the coordinated control according to the retained coordination control signal. At the same time, the VSA-ECU (31) transmits the coordination control signal retained in the EEPROM onto a CAN so that the transmitted coordination control signal may be used by other ECUS of other vehicle behavior control units such as an ATTS-ECU (41) and a STG-ECU (51). In this manner, the behavior of the vehicle may be optimized by the coordination control of the VSA unit and other vehicle behavior control units.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 24, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takashi Yanagi, Kiyoshi Wakamatsu, Takayuki Seki
  • Patent number: 8751126
    Abstract: An accelerator reaction force control apparatus is provided with an accelerator position detecting device, a reaction force varying device and a threshold value setting device. The reaction force varying device varies a reaction force of the accelerator so as to increase a reaction force of the accelerator by a prescribed increase amount with respect to a base reaction force when the accelerator position is equal to or larger than an accelerator position threshold value. The reaction force varying device also varies a reaction force increase rate at a first increase rate during a first reaction force increase period of the increase of the reaction force, and at a second increase rate during a second reaction force increase period of the increase of the reaction force. The second increase rate is larger during the second reaction force increase period than during the first reaction force increase period.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 10, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigeyuki Sakaguchi, Masao Shiomi, Masahiro Omori
  • Patent number: 8725314
    Abstract: Each motor is controlled by a microcontroller and the set of microcontrollers is driven by a central controller. According to the invention, said method comprises: a preliminary step consisting at least in establishing an asynchronous serial communications link over a line between the central controller and each of the microcontrollers, and in allocating an address parameter to each microcontroller; and in operation, at least a control step proper consisting: i) for the central controller, in sending simultaneously on each link line a message containing at least one instruction specified by the address parameter of a destination microcontroller that is to execute said instruction; and ii) for each destination microcontroller, in extracting the instruction addressed thereto from said message, and executing it.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: May 13, 2014
    Assignee: Parrot
    Inventors: Cedric Chaperon, Eline Pierre
  • Patent number: 8712661
    Abstract: In an accelerator pedal effort control apparatus which increases a pedal effort of an accelerator pedal 2 when an accelerator opening angle is larger than a predetermined accelerator opening angle threshold value, in a case where a steering angle of a steering wheel when a vehicle driver starts to increase an opening angle of accelerator pedal 2 is small, a pedal effort increment is a reference pedal effort increment (?F) and, in a case where the steering angle is large, is a relatively small pedal effort increment (?F??). Thus, when the vehicle turns right or left from a stopped state, pedal effort increment (?F??) is set to relatively be small so that a smooth acceleration becomes possible.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 29, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigeyuki Sakaguchi, Masao Shiomi, Masahiro Omori
  • Patent number: 8682543
    Abstract: A method of operating a transmission having a plurality of gears which can operate in an automatic shifting mode, during which a gear is selected automatically depending on the current driving situation, and also in a manual shifting mode during which a gear is selected depending on a driver's command. When the driver commands a shift, a change takes place from the automatic shifting mode to the manual shifting mode. A specific threshold value of the transmission output speed or an equivalent rotational speed value is associated with each gear and, when the driver commands a downshift, a target gear is determined as a function of the current transmission output speed or the equivalent rotational speed value. The gear selected as the target gear is the gear whose specific threshold value is higher than or equal to the current transmission output speed or the equivalent rotational speed value.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 25, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Detlef Plath, Friedemann Jauch, Franz-Josef Schuler, Peter Spoerl
  • Patent number: 8670913
    Abstract: When an accelerator opening exceeds an opening threshold value, a base pedaling force of an accelerator pedal is increased. An increment to a pedaling force is changed in accordance with the accelerator opening in a manner to make the pedaling force approach a characteristic that the pedaling force increases at a constant rate with respect to increase of the accelerator opening. For example, when a mechanism is employed which has a convex-up characteristic wherein the rate of increase of base pedaling force decreases as the accelerator opening increases, the increment is set to increase as the accelerator opening increases. Conversely, when a mechanism is employed which has a convex-down characteristic wherein the rate of base pedaling force increases as the accelerator opening increases, the increment is set to decrease as the accelerator opening increases.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: March 11, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigeyuki Sakaguchi, Masao Shiomi, Masahiro Omori
  • Patent number: 8670898
    Abstract: A vehicular tire pressure device integrates a central monitor and signal match device of a conventional tire pressure monitoring system. The vehicular device is also combined with a power-getting interface physically. The vehicular device is also provided with a separate battery which may be rechargeable and be charged by the interface. The monitoring system and vehicular tire pressure device may be used more easily and is convenient in installation and testing and therefore, they may be accepted more easily by the user and get great commercial success.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: March 11, 2014
    Assignee: Steelmate Co., Ltd
    Inventor: Zhitao Li
  • Patent number: 8660690
    Abstract: A robot control system has a portable operating device TP and a robot control device RC. The portable operating device TP is actuated by a rechargeable secondary battery and used to operate a robot R. The robot control device RC is capable of wireless communication with the portable operating device TP and performs automatic operation of the robot R based on teaching data provided by the portable operating device TP. The robot control system causes an emergency stop of the robot R when the wireless communication between the portable operating device TP and the robot control device RC is interrupted. The robot control system further includes a charging device CU, a connection monitoring section 12, and an automatic operation continuing section 11. The charging device CU charges the secondary battery by electrically connecting the portable operating device TP to the robot control device RC.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: February 25, 2014
    Assignees: Daihen Corporation, Nachi-Fujikoshi Corp.
    Inventors: Nobuhiro Tani, Yasuhiro Koujina, Yuji Nakatsugawa
  • Patent number: 8649906
    Abstract: In order to increase the safety of a robot that may come into contact with other robots, objects or humans, the invention provides that said robot comprises at least two joints and parts that are moveable in relation to each other via at least one joint. At least one sensor (31) is arranged on at least one moveable part (3, 4, 5?, 6, 7), detecting torque. Sensor components (21?, 22.1, 22.2) of the sensor (31) are designed for the redundant detection of a torque, or for the redundant detection of a torque of at least two sensors (31) are provided, and redundant evaluation units are provided for the redundant evaluation. In order to increase safety, the invention further provides a method for monitoring torque on a robot of said kind, wherein at least a torque on at least one movable part (3, 4, 5?, 6, 7) is redundantly detected and redundantly evaluated on at least one moveable part (3, 4, 5?, 6, 7) by means of two sensor components of a sensor (31) or by means of two sensors (31).
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 11, 2014
    Assignee: KUKA Laboratories GmbH
    Inventors: Rainer Bischoff, Eugen Heinze, Ralf Koeppe, Johannes Kurth, Gunter Schreiber, Uwe Zimmermann
  • Patent number: 8583332
    Abstract: A prime mover revolution speed control system for a hydraulic construction machine sets the revolution speed of the prime mover in accordance with the operating state invoked by an operating command and as a result of a determination of an excavation state so that that the revolution speed of the engine can be increased for a heavy load (speedup) in the excavation state. When the control lever is fully operated in the direction of arm crowding, the control lever 43 is also operated, and first judgment conditions are all met to conclude that an excavation state has begun. During excavation work, when the control lever 44 is subjected to a half or greater operation in the arm crowding direction, second judgment conditions are all met to conclude that the excavation state persists, and the speedup sequence is continued.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: November 12, 2013
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Mitsuhiko Kanehama, Kensuke Sato, Yasuo Okano, Hiroyuki Azuma, Tsuyoshi Nakamura
  • Patent number: 8504282
    Abstract: When a vehicle is stopped on a slope, a brake is operated to stop rotation of a drive wheel so that no torque is applied thereto, and the posture of the body is controlled by moving an active weight portion so that stabilized stop state of the vehicle can be achieved without consuming a large quantity of energy. The vehicle comprises the drive wheel attached rotatably to the body, the active weight portion attached movably to the body, and a vehicle controller for controlling the posture of the body by controlling at least one of the drive torque imparted to the drive wheel and the position of the active weight portion, wherein the vehicle controller controls the posture of the body by controlling only the position of the active weight portion when the vehicle is stopped on a slope.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: August 6, 2013
    Assignee: Equos Research Co., Ltd.
    Inventor: Naoki Gorai
  • Patent number: 8386147
    Abstract: In a heating apparatus for heating the air sucked into a gas turbine by a heat exchanger, the temperature fluctuation of the heated air is suppressed even in the period, for which a steam source to be fed to the heat exchanger is changed. For suppression, a heat exchanger is fed with both a self-can steam, the feed rate of which is controlled by a self-can steam control valve, and the auxiliary-steam, the feed rate of which is controlled by an auxiliary-steam control valve. At starting time, the quantity of the auxiliary-steam is reduced at a constant rate, and that of the self-can steam is increased while a feedback control and a feedforward control are being made. At stopping time, the quantity of the self-can steam is reduced at a constant rate, and that of the auxiliary-steam is increased while the feedback control and the feedforward control are being made.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 26, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Satoshi Tanaka, Shoichi Harada