Patents Examined by Charles S Laughlin
  • Patent number: 11489471
    Abstract: A diagnostic system includes: a current command module configured to, based on a motor torque request, a motor speed, a direct current (DC) bus voltage, generate a d-axis current command for an electric motor and a q-axis current command for the electric motor; a voltage command module configured to, based on the d-axis current command and the q-axis current command, generate a d-axis voltage command and a q-axis voltage command; a switching control module configured to control switching of an inverter module based on the d-axis voltage command and the q-axis voltage command, where the inverter module is configured to apply power to stator windings of the electric motor from the DC bus; and a fault module configured to selectively indicate that the stator windings of the electric motor are degraded when the d-axis voltage command is less than a predetermined nominal d-axis voltage of the electric motor.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 1, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jiyu Zhang, Siddharth Ballal, Lei Hao, Wesley G. Zanardelli, Bojian Cao
  • Patent number: 11469692
    Abstract: A converter controller configured to control a firing phase of a converter includes an integral element integrating a deviation of DC current from a current command value and generates a voltage command value of output voltage of the converter by performing control calculation of the deviation. In a first mode of performing commutation of an inverter by intermittently setting DC current to zero, the converter controller sets DC current to zero for a predetermined pause time by narrowing a phase control angle simultaneously with a commutation command for the inverter. When the control calculation is resumed immediately after the pause time, the converter controller uses a control amount calculated in control calculation immediately before the pause time as a preset value of the integral element immediately after the pause time.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: October 11, 2022
    Assignee: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Hironori Kawaguchi, Hiroshi Ogino, Yasuaki Matsumoto, Akinobu Ando
  • Patent number: 11463038
    Abstract: A control device for a multi-phase converter including converter circuits of m phases of which each includes a switching element includes: a driven phase number control unit configured to control the multi-phase converter in n-phase driving or m-phase driving; a storage unit configured to store first and second patterns; a selection unit configured to select the first or second pattern while the multi-phase converter is stopped, an on/off control unit configured to perform on/off control on the switching elements of the number of driven phases; and a prediction unit configured to predict a predicted correlation value which is correlated with a time ratio which is a ratio of a time in which control in the m-phase driving is predicted to be performed to a time in which control in the n-phase driving is predicted to be performed in a predetermined time.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: October 4, 2022
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayuki Itou, Tomohiko Kaneko
  • Patent number: 11437939
    Abstract: A control system for a multiphase electric motor comprises processing means arranged to determine a pattern of PWM voltage waveforms to be applied to respective phases of the motor, the processing means assigning different PWM patterns for use with different motor positions. In use for a given rotational position of the motor the processing means is normally adapted to apply PWM waveforms according to the assigned PWM pattern unless a different PWM pattern is currently in use at that time, except that in the event that the demanded voltage waveforms cannot be achieved with the current PWM pattern the processing means is adapted to force the PWM pattern to change. Upon the rotor moving into a different position associated with a different assigned pattern the processing means forces the PWM pattern to change to the assigned PWM pattern.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: September 6, 2022
    Inventor: Christopher David Dixon
  • Patent number: 11431238
    Abstract: A power conversion device may include a first inverter to which one end of each phase winding of a motor is coupled, a second inverter to which the other end of each phase winding is coupled, and a switch circuit having at least one of a first switch element that switches between connection and disconnection of the first inverter to and from a ground, a first protection circuit being coupled in parallel to the first switch element, and a second switch element that switches between connection and disconnection of the second inverter to and from the ground, a second protection circuit being coupled in parallel to the second switch element.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: August 30, 2022
    Assignee: NIDEC CORPORATION
    Inventors: Takashi Kitamura, Eiji Wada
  • Patent number: 11431272
    Abstract: An energy recovery circuitry for an electric motor with a single phase winding, consisting of two coil sections with central connection, whereby the two coil ends of the coil sections are each connected to ground via a switching element. The task of the invention is therefore, for an electric motor of this type, to ensure, a significantly higher efficiency, a better and defined switching of the coil switching elements, a thermal relief for the switching elements, improved and smoother running, reduced warming of the printed circuit board, improved EMC characteristics, a more robust design of the overall switching, a focused conduction of the losses and an extra protection against any surge impulses from a mains network.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: August 30, 2022
    Assignee: BÜHLER MOTOR GMBH
    Inventors: Jens Weiß, Gerhard Walter
  • Patent number: 11431176
    Abstract: A system and method for providing power to a vehicle is disclosed. The system can include a plurality of parallel module converter modules (“modules”) each capable of supplying a predetermined electrical load. The plurality of parallel module converter modules can be networked to form a parallel module converter (“converter”) for prioritizing and allocating each electrical load to one or more parallel module converter modules. Each module can include an internal protection controller and a logic controller. The individual modules can provide power to various loads in the vehicle either alone, or in concert with other modules. The system can enable fewer power controllers to be used, saving weight and time. The controllers in the system can also be utilized at a higher level reducing unnecessary redundancy.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: August 30, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Adam J. Winstanley, Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu, Lijun Gao, Matthew J. Krolak
  • Patent number: 11424612
    Abstract: A method and apparatus for operating an overvoltage response for an electric machine includes opening a first switching element and a second switching element in response to an overvoltage condition. In the instance that the overvoltage condition persists, the method and apparatus can further open a third switchable element to cease the overvoltage condition.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: August 23, 2022
    Assignee: GE Aviation Systems LLC
    Inventors: Hao Huang, David Dimitri Karipides, Roger Dean Thornton
  • Patent number: 11424700
    Abstract: A Hall sensor circuit includes a first Hall element and a second Hall element, first and second Analog-to-Digital Converter (“ADC”) channel inputs passively coupled to first and second output nodes of the first Hall element, third and fourth ADC channel inputs passively coupled to the first and second output nodes of the second Hall element, a first ADC output for providing a first digital output signal, and a second ADC output for providing a second digital output signal. The Hall element outputs can be directly coupled to the ADC or coupled through a passive resistor-capacitor filter.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 23, 2022
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Wei Wu
  • Patent number: 11418126
    Abstract: An inrush current suppression device is an inrush current suppression device that suppresses an inrush current flowing from a DC power supply through a mechanical switch, and includes: a first capacitor having one end connected to a positive terminal of the DC power supply through the mechanical switch; a semiconductor switching element connected to the other end of the first capacitor and a negative terminal of DC power supply between the other end of the first capacitor and the negative terminal of the DC power supply; a resistance element connected in parallel to the semiconductor switching element; and a control circuit for controlling the semiconductor switching element. The control circuit has a first output port, and controls ON time and OFF time of the semiconductor switching element by outputting a PWM signal from the first output port to the semiconductor switching element after the mechanical switch is closed.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: August 16, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Toshiki Tsubouchi, Mineaki Isoda
  • Patent number: 11404968
    Abstract: A thyristor bridge of an electrical converter is connected to at least one DC link and including at least one phase leg for each output phase and each phase leg being composed of two series-connected thyristor arms. The thyristor arms of a thyristor bridge are cyclically switched by: determining an upper bound for a firing angle of a thyristor arm, wherein the upper bound is determined from voltage and current measurements; and determining a firing angle for the thyristor bridge, which firing angle determines a switching time of the thyristor arm, wherein the firing angle is determined, such that it is less or equal to the upper bound.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: August 2, 2022
    Assignee: ABB SCHWEIZ AG
    Inventors: Thomas Besselmann, Pieder Jörg
  • Patent number: 11402139
    Abstract: The invention relates to a control apparatus for a refrigerator compressor having at least one two-phase AC asynchronous motor (K1, K2), having mains connection means (10) for connection to a preferably public voltage supply network which nominally provides a mains AC voltage of between 85 V and 264 V, in particular between 100 V and 230 V, first voltage converter means (14) which are connected downstream of the mains connection means and are intended to generate an intermediate voltage, in particular an intermediate DC voltage, from the mains AC voltage, second voltage converter means (16-1, 16-2) which are connected downstream of the first voltage converter means and are intended to generate an output signal which is independent of a level and a mains frequency of the mains AC voltage, in particular has a constant voltage and/or frequency in periods, and is intended to control the refrigerator compressor with an AC voltage of a plurality of differently predefinable voltage levels, wherein the mains connecti
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: August 2, 2022
    Assignee: EPPENDORF AG
    Inventors: Rüdiger Uhlendorf, Gary Poole, George Mason, Ted Kao
  • Patent number: 11390378
    Abstract: The present invention relates to an actuator in a landing gear system of an aircraft, comprising: an electric drive for driving the actuator and first drive electronics for controlling the electric drive that are connected to the drive via an electric line, with second drive electronics for controlling the electric drive that are connected to the drive via an electric line, with the first drive electronics and the second drive electronics being redundant with respect to one another.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: July 19, 2022
    Assignee: Liebherr-Aerospace Lindenberg GmbH
    Inventors: Manfred Hinderhofer, Christian Schilling
  • Patent number: 11394330
    Abstract: A current command module is configured to, based on a direct current (DC) bus voltage for an electric motor of the vehicle, generate a d-axis current command for the electric motor and a q-axis current command for the electric motor. A voltage command module configured to generate voltage commands based on the d-axis current command and the q-axis current command. A battery switching control module is configured to: determine a voltage operating state of a battery based on the voltage commands; compare a battery parameter to at least one of a predetermined voltage parameter and a predetermined current parameter during a dwell time when a plurality of switches of the battery are open; and generate a switch control signal to transition at least one switch of the plurality of switches to cause the battery to operate in the voltage operating state based on the comparison.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: July 19, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Lei Hao, Alireza Fatemi, Thomas W. Nehl, Chandra S. Namuduri
  • Patent number: 11387759
    Abstract: A rotation electric machine controller includes: a torque command value acquisition section that acquires a torque command value for a rotation electric machine; and a setting section that sets a negative limit value limiting a d-axis current command value. The setting section sets the limit value having a larger absolute value in a case where the torque command value is large, in comparison to a case where the torque command value is small.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: July 12, 2022
    Assignee: DENSO CORPORATION
    Inventors: Hiroyasu Otake, Takashi Suzuki
  • Patent number: 11387765
    Abstract: A system and method for controlling a DC midpoint terminal voltage of a three level inverter is provided. The method includes receiving an input power signal at a three level motor control system that includes a three level inverter, the three level inverter powering an electric motor, determining, in the three level motor control system, a speed value of the electric motor, and adjusting a zero-sequence inverter output voltage to adjust a midpoint voltage at the DC midpoint based on the determined speed value.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: July 12, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Jordan K. Vanevenhoven, Curtis J. Plude, Gary L. Miles
  • Patent number: 11387758
    Abstract: A motor controller estimates an initial position of a magnetic pole of a rotor of a brushless DC motor in an inductive sensing scheme. The motor controller controls a drive circuit to apply an AC voltage to a stator winding at a first energization angle, and subsequently to apply an AC voltage to the stator winding at a second energization angle before a residual current flowing through the stator winding returns to zero. At each energization angle, the motor controller corrects a peak value of a current in the stator winding based on the residual current detected immediately before a voltage is applied to the stator winding or at a time when voltage application to the stator winding is started. Based on the corrected peak value, the control circuit estimates the initial position of the magnetic pole of the rotor.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 12, 2022
    Assignee: KONICA MINOLTA, INC.
    Inventors: Hiroyuki Yoshikawa, Yuta Tachibana, Daichi Suzuki
  • Patent number: 11368113
    Abstract: A generator system includes a generator including terminals, a generator circuit breaker coupled to the terminals and that couples and decouples the generator from a power grid, multiple sensors, and a controller that operates the generator system. The controller determines whether an active power is less than a reverse active power threshold and whether one or more turbine valves are closed, and determines that a breaker failure has occurred based on the active power being less than the reverse active power threshold and the one or more turbine valves being closed. If the active power remains less than the reverse active power and the turbine valves remain closed after a threshold time period after the trip command, and if a reactive power is less than a reverse reactive power threshold, then a breaker failure has occurred. In response, the controller may transmit another trip command to the generator circuit breaker to initiate the breaker failure protection.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: June 21, 2022
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventor: Matchyaraju Alla
  • Patent number: 11362602
    Abstract: Disclosed herein are a motor control apparatus and method. The motor control apparatus includes a compensation signal generator configured to apply a DC-Link voltage (VLink) for driving a motor to a parameter map preset in order to estimate a gain and phase of a motor torque ripple generated when the motor is driven according to a motor command current and a motor rotation speed, and to generate a compensation signal (icomp) for compensating for the motor torque ripple corresponding to a current input motor command current (iq*), motor rotation speed (?m), and DC-Link voltage (VLink), and a current controller configured to control the current of the motor by controlling an inverter such that a compensation command current (iq*_comp), generated by reflecting the compensation signal (icomp), in the motor command current (iq*), coincides with a motor drive current (iq) supplied to the motor from the inverter.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 14, 2022
    Assignee: HYUNDAI MOBIS CO., LTD.
    Inventors: Hyeon Hee Jeong, Kyu Ha Kim, In Hyuk Kim, Jeong Hoon Seo
  • Patent number: 11362564
    Abstract: A linear actuator includes a casing that contains a moveable shaft moved by a motor in response to a drive signal and coupled to an encoder that determines an actual instantaneous position of the shaft and forms part of a control loop that adjusts the drive signal so as to ensure accurate positioning of the shaft. A temperature sensor mounted on the shaft produces a temperature signal indicative of instantaneously measured temperature, and a temperature compensator responsive to the measured temperature for generating a negative or positive offset for correcting the drive signal so as to move the shaft to a positon that is corrected for instantaneous expansion or contraction of the shaft owing to departures of the shaft's actual temperature from a known baseline temperature.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: June 14, 2022
    Assignee: Kappasense Ltd.
    Inventors: Michael Driker, Boris Kilunov, Stanislav Podlisker