Patents Examined by Charles S Laughlin
  • Patent number: 11973457
    Abstract: An embodiment driver circuit comprises a power supply pin configured to receive a power supply voltage, and a set of control pins configured to provide a set of control signals for controlling switching of a set of switches of an h-bridge circuit comprising a pair of high-side switches and a pair of low-side switches. The driver circuit comprises control circuitry coupled to the control pins and configured to generate the control signals, and sensing circuitry coupled to the power supply pin and configured to generate a detection signal indicative of the power supply voltage exceeding a threshold value. The control circuitry is sensitive to the detection signal and is configured to generate the control signals to activate one of the pair of high-side switches and the pair of low-side switches and de-activate the other of the pair of high-side switches and the pair of low-side switches.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 30, 2024
    Assignees: STMicroelectronics (Alps) SAS, STMicroelectronics S.r.l., STMicroelectronics Application GMBH
    Inventors: Aldo Occhipinti, Christophe Roussel, Fritz Burkhardt, Ignazio Testoni
  • Patent number: 11969845
    Abstract: In a quick measurement module provided by the present invention, a first distance sensing unit and a second distance sensing unit are provided individually on a movable seat, so that when the movable seat is displaced along a linear shifting axis, the first distance sensing unit senses the distance from the first reference plane, and meanwhile, the second distance sensing unit senses the distance from the second reference plane, so as to sense the linearity accuracy in movement of the movable seat with respect to the first reference plane and the second reference plane. The first reference plane and the second reference plane are spaced apart by an angle other than a right angle, so that the linearity accuracy in movement in the two different planes, such as the horizontal linearity accuracy and vertical linearity accuracy, of the movable seat can be obtained through sensing.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: April 30, 2024
    Assignee: HIWIN MIKROSYSTEM CORP.
    Inventors: Chen Yi Wang, Zong Ting Sie, Kou I Szu
  • Patent number: 11967851
    Abstract: A method for adapting a usage level of a battery pack includes measuring cell sense data for each respective battery cell using a cell sense circuit, the cell sense data including a cell voltage, current, and temperature. The method includes processing the cell sense data, for each respective battery cell, through multiple battery state functions of a controller to generate numeric cell degradation values (CDVs). The battery state functions are calibrated relationships of the cell sense data to predetermined battery fault conditions. Thereafter, the method includes automatically adapting the usage level of the battery pack during operation of the battery pack, via the controller, based on the numeric CDVs. An electric powertrain system includes the battery pack, cell sense circuit, a rotary electric machine, and a controller configured to execute the above method.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: April 23, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: James C. Gibbs, Andrew M. Zettel, Calvin Goodman, Rajesh Nagappala
  • Patent number: 11962261
    Abstract: An electronic motor control system provides selectable linear and pulse-width modulated (PWM) operation without generating cross-over distortion. The system includes an output stage that has a pair of push-pull drivers each coupled to a terminal of the motor. The electronic motor control system also includes a pulse-width modulated (PWM) driver for providing pulse-width modulated drive signals to an input of the output stage when the pulse-width modulated mode is selected and a linear amplifier stage that provides a linear analog signal to the input of the output stage in linear mode, so that both drivers are operated to supply the current to the motor. In pulse-width modulated mode, a driver is selected for PWM operation, while the other driver is operated to supply a fixed voltage. A feedback control loop senses motor current and provides outputs to the pulse-width modulator and the linear amplifier stage.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: April 16, 2024
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Vamsikrishna Parupalli, Mark May, Eric B. Smith, Zhong You
  • Patent number: 11949226
    Abstract: An external power supply system for spindles is revealed. The external power supply system includes a tool holder, a rectifier circuit, an overvoltage protection circuit. and a buck/boost converter. The tool holder receives an external power source of a spindle while the rectifier circuit converts the external power source into a rectified output signal with a power factor through step-down transformation. The overvoltage protection circuit is used to check whether the rectified output signal is larger than an overvoltage signal for outputting an operating potential or a non-operating potential. The buck/boost converter is used for receiving the rectified output signal with the power factor and converting the rectified output signal to an output voltage according to the power factor. Then the output voltage is provided to a load of a low voltage power supply, a high voltage power supply, or a constant voltage power supply.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: April 2, 2024
    Assignee: NATIONAL CHUNG HSING UNIVERSITY
    Inventors: Chien-Hung Liu, Yu-Hung Li
  • Patent number: 11949321
    Abstract: An electronic control system provides selectable linear and pulse-width modulated (PWM) operation with reduced disruption when changing from PWM operation to linear operation. The system includes an output stage that has a push-pull driver coupled to the load, which may be a motor, a haptic device, or other device requiring current-mode control. The system also includes a pulse-width modulated (PWM) driver for providing pulse-width modulated drive signals to gates of the transistors of the output stage when a pulse-width modulated mode is selected, and a linear amplifier stage that provides a linear analog signal to the gates of the transistors when a linear mode is selected. A pre-charging circuit pre-charges the gates during a pre-charge cycle that is initiated when the operating mode changes from the PWM operating more to the linear operating mode.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: April 2, 2024
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Vamsikrishna Parupalli, Nishant Jain, Mengde Wang
  • Patent number: 11942778
    Abstract: A device for supplying power to an inductive load, including an H-bridge switching structure, the switching structure being designed to drive a current in the inductive load through a first control output and a second control output, an anomaly detector designed to generate an item of anomaly detection information about the detection of an anomaly at the switching structure, the anomaly detector including a first voltage generator, a second voltage generator, a first current measuring device, a second current measuring device designed to measure a current at the output of the second voltage generator, a third current measuring device, a fourth current measuring device, a fifth current measuring device and a sixth current measuring device, the current measuring devices being designed to respectively measure the currents of the switches.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: March 26, 2024
    Assignee: VITESCO TECHNOLOGIES GMBH
    Inventors: Thierry Bavois, Florence Capy
  • Patent number: 11909347
    Abstract: A stepping motor control device includes a driving unit that drives a stepping motor including a rotor that rotates a hand and a coil that generates a magnetic flux for rotating the rotor, a control unit that outputs, to the driving unit, a driving pulse for rotating the rotor and a swinging pulse for swinging the rotor, a voltage detecting unit that detects an induced voltage generated in the coil when the rotor vibrates, and a determining unit that determines, based on a result of the detection of the voltage detecting unit, a mechanical load received by the rotor.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: February 20, 2024
    Assignee: SEIKO WATCH KABUSHIKI KAISHA
    Inventors: Akihito Okumura, Kosuke Yamamoto, Tetsuya Nobe, Kazumi Sakumoto
  • Patent number: 11881701
    Abstract: A DC-overcurrent detector includes: at least one electric line passing the detector from a source terminal of the detector to a load terminal of the detector; at least one first sensor for monitoring an electric current in the at least one electric line and outputting a current measurement signal; at least one current flow direction sensor for distinguishing a current flow direction of the electric current in the at least one electric line between a first direction from the source terminal to the load terminal and a second direction from the load terminal to the source terminal, and outputting a current flow direction signal; a comparator unit for comparing an actual value of the current measurement signal with a threshold criterion, and outputting a trigger signal at a trigger output if a value of the current measurement signal reaches the threshold criterion; and a threshold criterion unit.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: January 23, 2024
    Assignee: EATON INTELLIGENT POWER LIMITED
    Inventor: Wolfgang Hauer
  • Patent number: 11870382
    Abstract: A matrix power conversion device including a plurality of three-phase switching modules and a controller is provided. Each three-phase switching module includes a plurality of bidirectional switches connected to the input phase voltages of the three-phase input power respectively and outputs a corresponding output phase voltage of the three-phase output power. The controller determines a maximum voltage, an intermediate voltage and a minimum voltage among all the input phase voltages to acquire a waveform of a control carrier wave in a switching cycle. The controller acquires output expected values corresponding to all output phase voltages and compares them with the waveform of the control carrier wave for acquiring a turning-on time of each of the plurality of bidirectional switches. Accordingly, the controller controls the matrix power conversion device to switch the three-phase input power so as to change the three-phase output power for driving the motor.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: January 9, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Ping-Heng Wu, Kai-Wei Hu, Lei-Chung Hsing
  • Patent number: 11870384
    Abstract: The purpose of the present invention is to provide a speed detection method for maintaining a fine time axis resolution and a power conversion device that uses the method. This power conversion device comprises an inverter for converting DC voltage into AC voltage and supplying the same to a motor, a motor speed calculation unit for calculating the speed of the motor from output pulses obtained from an encoder connected to the motor, and a control unit for receiving the motor speed from the motor speed calculation unit and controlling the inverter. In the power conversion device, the motor speed calculation unit measures the duty cycle of the output pulses, calculates the speed using the half cycles of the output pulses if the duty cycle is within a prescribed range from 50%, and calculates the speed using the full cycles of the output pulses if the duty ratio is outside of the prescribed range from 50%.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 9, 2024
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hiroshi Watanabe, Masataka Sasaki, Masahiro Hiraga, Yusuke Arao, Atsuhiko Nakamura, Hiroyuki Tomita, Kazushige Hotta, Yusaku Onuma
  • Patent number: 11855560
    Abstract: A motor control method includes the following steps: receiving a frequency command and an excitation current setting value as a motor speed command; running a magnetic flux calculation program to generate a magnetic flux voltage command; generating a synchronous coordinate voltage command, and providing a three-phase current to a sensorless motor; calculating a synchronous coordinate feedback current based on the three-phase current, and calculating an effective current value of three-phase current; calculating a reactive power feedback value based on synchronous coordinate voltage command and the synchronous coordinate feedback current; running a steady state calculation program to calculate a reactive power command based on frequency command and the effective current value; calculating a reactive power error value between the reactive power command and the reactive power feedback value; and adding magnetic flux voltage command and reactive power error value to adjust synchronous coordinate voltage command a
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 26, 2023
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yu-Shian Lin, Ming-Tsung Chen
  • Patent number: 11841687
    Abstract: An electromechanical watch including an electromechanical motor (4) mechanically coupled to an analogue display (AD) and formed by two coils (B1, B2) through which the magnetic circuit (10) of the stator passes. A first of the two coils is connected to a voltage detection circuit (CD1, CD2) arranged to be able to detect any voltage induced in this first coil during intervals of time occurring, in a stepping functioning mode of the motor, between drive pulses to detect whether an unwanted step is made by the rotor (18) during these intervals of time. The electromechanical watch includes at least one switch (T1, T2, T3) that is controlled by an electronic control circuit (CEC) to short-circuit the second coil during each of said intervals of time, in order to passively hold the rotor in the idle position in which it is situated momentarily between the drive pulses.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: December 12, 2023
    Assignee: ETA SA MANUFACTURE HORLOGÈRE SUISSE
    Inventor: Romain Besuchet
  • Patent number: 11821952
    Abstract: A method of estimating a d-q axis inductance of a permanent magnet synchronous motor includes the following steps. First, building an equivalent motor control block through enabling two of the three phases, and disabling the remaining one of the three phases, and locking a rotor. Afterward, incorporating a back EMF observer into a DC motor control block, and making the DC motor control block correspond to the back EMF observer by commanding an angular speed of the DC motor control block to be zero. Afterward, introducing the equivalent motor control block into the DC motor control block, and using the back EMF observer to estimate the back EMF, and repeating above steps taking turns to disable one phase so as to obtain three sets of motor inductances respectively. Finally, estimating the d-q axis inductance by introducing the three sets of equivalent motor inductances into an inductance relational equation.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: November 21, 2023
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Mi-Ching Tsai, Ting-Chung Hsieh, Lung-Jay Cheng, Yao-Sheng Wu, Chun-Ju Wu
  • Patent number: 11817811
    Abstract: A motor control system includes a motor; a motor and a motor control circuit coupled to the motor to provide power to the motor. The motor control circuit includes a power feedback loop having a power reference circuit to provide a reference power level and a power control circuit configured to provide a constant power level to the motor so that the motor operates with a substantially constant power output. The constant power level is proportional to the reference power level. Thus, the motor also provides substantially constant torque when the motor is at a constant speed.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 14, 2023
    Assignee: Allegro MicroSystems, LLC
    Inventor: Yisong Lu
  • Patent number: 11801763
    Abstract: A vehicle has a drive system that includes a battery, two inverters, an electric machine, and switches. The vehicle also has a controller that, responsive to charge mode, operates the switches to couple one of the inverters to a charge port and operates at least one of the inverters such that DC current from the charge port sequentially flows through the one of the inverters, the electric machine, and the other of the inverters to the battery.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: October 31, 2023
    Assignee: Ford Global Technologies, LLC
    Inventor: Ali Najmabadi
  • Patent number: 11803178
    Abstract: An event estimation system includes an upper device, and a lower controller device including first circuitry that acquires operation information of a control target device connected to the lower controller device, estimates a presence or absence of an abnormality based on the operation information, holds the operation information for a certain time period, and transmits, based on the presence or absence of an abnormality and to the upper device, the operation information related to the estimation of the presence or absence of the abnormality. The upper device has second circuitry that receives the operation information from the lower controller device, and operates according to the presence or absence of the abnormality, inputs, using an upper neural network model, the operation information, output event information, and estimates an event.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 31, 2023
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Tsuyoshi Yokoya, Masaru Adachi
  • Patent number: 11791619
    Abstract: A combination motor control device includes a power circuit (180) structured to sense voltage and/or current flowing through the combination motor control device, a semiconductor switching and interruption circuit (170) including a number of solid state transistors and being operable to turn on to allow power to flow through the combination motor control device and to turn off to stop allowing power to flow through the combination motor control device, and a control circuit (190) structured detect faults in power flowing through the combination motor control device based on the sensed voltage and/or current, to control the semiconductor switching and interruption circuit (170) to provide a motor starter and/or motor controller functionality, and to control the semiconductor switching and interruption circuit (170) to turn off in response to detecting a fault in power flowing through the combination motor control device.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: October 17, 2023
    Assignee: EATON INTELLIGENT POWER LIMITED
    Inventors: Xin Zhou, Huaqiang Li, Thomas Ruchti
  • Patent number: 11759224
    Abstract: A surgical instrument system comprising a first motor, a second motor, and a third motor is disclosed. The surgical instrument system comprises a first handle comprising a first number of controls, a second handle comprising a second number of controls, and a shaft assembly. The shaft assembly is attachable to the first handle in a first orientation in order to engage one of the motors. The shaft assembly is attachable to the second handle in a second orientation to engage a different motor. The surgical instrument system is configured to perform a different function of an end effector in the first orientation and the second orientation.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 19, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Chester O. Baxter, III
  • Patent number: 11764713
    Abstract: Various embodiments of the present disclosure relate, generally, to a control system for a movable partition. In one embodiment, the control system is an access control system that includes a lock control interface and a remote line interface at which lock modes are asserted, and which are communicated to a door controller. Protocols installed at the controller enable the controller to provide control signals to the movable partition responsive to the various lock modes asserted at the lock control interface and remote line interface.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 19, 2023
    Assignee: Won-Door Corporation
    Inventors: E. Carl Goodman, Duane O. Hall, Nathan Godwin, Daniel L. Steadman