Patents Examined by Chih-Cheng Kao
  • Patent number: 11145481
    Abstract: An X-ray generation apparatus includes an electron gun emitting an electron beam having a circular cross-sectional shape, a magnetic focusing lens located downstream of the electron gun and focusing the electron beam while rotating the electron beam around an axis along a first direction, a magnetic quadrupole lens located downstream of the magnetic focusing lens and deforming the cross-sectional shape of the electron beam into an elliptical shape having a major axis along a second direction orthogonal to the first direction and a minor axis along a third direction orthogonal to the first direction and the second direction, and a target located downstream of the magnetic quadrupole lens and emitting an X-ray in response to incidence of the electron beam.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: October 12, 2021
    Inventors: Shinya Hattori, Ryosuke Yabushita, Naofumi Kosugi
  • Patent number: 11140764
    Abstract: A power supply for an x-ray emitter is disclosed. A voltage source of the power supply is configured to provide an acceleration voltage or a heating voltage between a first internal contact and a second internal contact to, in a first operating mode, supply the x-ray emitter with power. The power supply includes a control device configured, in a second operating mode, to detect a voltage between the first and the second internal contact and/or to detect a current via the first and/or second internal contact. As a function of the detected voltage and/or of the detected current, the control device is configured to activate a warning device for giving a warning and/or to transmit a warning signal. A method is further disclosed.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: October 5, 2021
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Florian Bauer, Andreas Boehme, Peter Klinger
  • Patent number: 11132782
    Abstract: Included are an inspection unit that outputs a detection signal corresponding to type and size of a foreign matter contained in an inspection object or a detection signal corresponding to weight of the inspection object, a determination unit that performs a pass/fail determination as to the inspection object, based on the detection signal from the inspection unit, an inspection record information accumulation unit that accumulates inspection record information including inspection date and time and inspection data, and a control unit that displays on a display operation unit, a list of inspection data of an inspection object having a defective inspection result from the inspection record information, and if one inspection object is selected from the inspection objects displayed as the list by an operation on the display operation unit, displays on the display operation unit, the inspection data in a predetermined range with reference to the selected inspection object.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: September 28, 2021
    Assignee: ANRITSU CORPORATION
    Inventor: Osamu Takata
  • Patent number: 11129264
    Abstract: An X-ray generator includes an X-ray tube, an X-ray tube accommodation portion, and a power source unit having an internal substrate supplying a voltage to the X-ray tube sealed inside an insulating block. A first space is defined by an upper surface of the insulating block and an inner surface of the X-ray tube accommodation portion. A second space is defined by a recess portion opening to the outside formed on a side surface of the insulating block and a sealing member sealing an opening of the recess portion. A communication hole causing the first space and the second space to communicate with each other is provided in the insulating block. Insulating oil is enclosed in the first space and the second space. A depth of the recess portion is smaller than a width of the recess portion.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: September 21, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Atsushi Ishii, Akihito Kobayashi
  • Patent number: 11116472
    Abstract: An X-ray image capturing apparatus includes a target determiner that determines a target position of an imager and a target angle of the imager based on imaging content information for generating a tomographic image, and a drive controller that controls a drive to be driven such that a relative position of the imager corresponds to the target position and a relative angle of the imager corresponds to the target angle.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: September 14, 2021
    Assignee: Shimadzu Corporation
    Inventor: Ken Shirota
  • Patent number: 11119245
    Abstract: The present specification discloses a high speed scanning system for scanning cargo carried by rail. The system uses of a two-dimensional X-ray sensor array with, in one embodiment, a cone-beam X-ray geometry. The pulse rate of X-ray source is modulated based on the speed of the moving cargo to allow a distance travelled by the cargo between X-ray pulses to be equal to the width of the detector, for a single energy source, and to half the width of the detector for a dual energy source. This ensures precise timing between the X-ray exposure and the speed of the passing object, and thus accurate scanning of cargo even at high speeds.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: September 14, 2021
    Assignee: Rapiscan Systems, Inc.
    Inventor: Edward James Morton
  • Patent number: 11112510
    Abstract: Disclosed herein is a radiation detector comprising: a scintillator configured to emit a second radiation upon receiving a first radiation from a pulsed radiation source, a plurality of pixels, and a controller; wherein each pixel is configured to detect the second radiation; wherein the pulsed radiation source is configured to emit the first radiation during a plurality of ON periods and configured not to emit the first radiation during a plurality of OFF periods; wherein the controller is configured to determine that the pulsed radiation source is at one of the ON periods or at one of the OFF periods; wherein the controller is configured to cause the pixels to integrate signals or not to integrate signals with determination that the radiation source is at one of the ON periods or at one of the OFF periods.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: September 7, 2021
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11109473
    Abstract: An X-ray source (10) for emitting an X-ray beam (101) is proposed. The X-ray source (10) comprises an anode (12) and an emitter arrangement (14) comprising a cathode (16) for emitting an electron beam (15) towards the anode (12) and an electron optics (18) for focusing the electron beam (15) at a focal spot (20) on the anode (12). The X-ray source (10) further comprises a controller (22) configured to determine a switching action of the emitter arrangement (14) and to actuate the emitter arrangement (14) to perform the switching action, the switching action being associated with a change of at least one of a position of the focal spot (20) on the anode (12), a size of the focal spot (20), and a shape of the focal spot (20). The controller (22) is further configured to predict before the switching action is performed, based on the determined switching action, the size and the shape of the focal spot (20) expected after the switching action.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: August 31, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Gereon Vogtmeier
  • Patent number: 11101098
    Abstract: An X-ray generation apparatus includes an electron gun having a cathode emitting an electron beam, a first housing accommodating the electron gun, a target on which the electron beam emitted from the electron gun is incident, a second housing accommodating the target, and an electron passage extending between the first housing and the second housing and configured to transfer the electron beam from a first internal space of the first housing to a second internal space of the second housing. The electron passage includes a diameter-reduced end portion decreasing in diameter toward the target. The first housing is provided with a first exhaust flow path for evacuating the first internal space in the first housing. The second housing is provided with a second exhaust flow path for evacuating the second internal space in the second housing.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: August 24, 2021
    Inventor: Ryosuke Yabushita
  • Patent number: 11101097
    Abstract: A source for generating ionizing radiation and in particular x-rays, to an assembly includes a plurality of sources and to a process for producing the source. The source comprises: a vacuum chamber; a cathode that is able to emit an electron beam into the chamber; an anode that receives the electron beam and that comprises a target that is able to generate ionizing radiation from the energy received from the electron beam; an electrode that is placed in the vicinity of the cathode and that allows the electron beam to be focused; a stopper ensuring the seal tightness of the vacuum chamber; and a mechanical part that is made of dielectric and that forms a portion of the vacuum chamber; and the stopper is fastened to the mechanical part by means of a conductive brazing film that is used to electrically connect the electrode.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: August 24, 2021
    Assignee: THALES
    Inventor: Pascal Ponard
  • Patent number: 11090512
    Abstract: A radiation dose received by a patient from a radiation therapy system can be verified by acquiring a cine stream of image frames from an electronic portal imaging device (EPID) that is arranged to detect radiation exiting the patient during irradiation. The cine stream of EPID image frames can be processed in real-time to form exit images providing absolute dose measurements at the EPID (dose-to-water values), which is representative of the characteristics of the radiation received by the patient. Compliance with predetermined characteristics for the field can be determined during treatment by periodically comparing the absolute dose measurements with the predetermined characteristics, which can include a predicted total dose in the field after full treatment and/or a complete irradiation area outline (CIAO). The system operator can be alerted or the irradiation automatically stopped when non-compliance is detected.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: August 17, 2021
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS INTERNATIONAL AG
    Inventors: Christof Baltes, Todd Holmes
  • Patent number: 11085887
    Abstract: The disclosed embodiments include a rock sample inspection method. The method may include preparing a sample of formation rock by encapsulating the sample, inserting the sample into a vessel body as part of a test assembly, enclosing the sample within an low compressibility fluid, applying pressure to an interior of the vessel body by tightening a compression screw employing a piston acting on said low compressibility fluid, monitoring the pressure, conducting a test on the sample, and recording results of the test for further analysis.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 10, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Abraham S. Grader
  • Patent number: 11083424
    Abstract: An anti-scatter grid for an X-ray beam detector is provided. The anti-scatter grid includes a plurality of X-ray absorption plates and a carrier body to which the plurality of X-ray absorption plates are fastened. The carrier body is embodied in a meander shape with a plurality of linearly extending subsections and curve sections connecting the plurality of linearly extending subsection with one another. At least one X-ray absorption plate is arranged in each linearly extending subsection of the plurality of linearly extending subsections.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: August 10, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Stanislav Tashenov
  • Patent number: 11079344
    Abstract: An X-ray detection device 30 comprises a low energy scintillator 31 configured to convert an X-ray of a low energy range into scintillation light, a low energy line sensor 32 configured to detect the scintillation light to output image data, a high energy scintillator 33 configured to convert an X-ray of a high energy range into scintillation light, and a high energy line sensor 34 configured to detect the scintillation light to output image data. Pixels L of the low energy line sensor 32 and pixels H of the high energy line sensor 34 are identical in number and are aligned at an identical pixel pitch, and a minimum filtering process is executed on the image data from the low energy line sensor 32, while an averaging process is executed on the image data from the high energy line sensor 34.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: August 3, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Toshiyasu Suyama, Tatsuya Onishi
  • Patent number: 11076819
    Abstract: A radiation protection device attaches to the C-arm of a fluoroscope and shields and collimates the X-ray beam between the X-ray source and the patient and between the patient and the image intensifier. One embodiment has a radiation shield of X-ray opaque material that surrounds the C-arm of the fluoroscopy system, the X-ray source and the image intensifier. A padded slot fits around the patient's body. Another embodiment has conical or cylindrical radiation shields that extend between the X-ray source and the patient and between the patient and the image intensifier. The radiation shields have length adjustments and padded ends to fit the device to the patient. The radiation protection device may be motorized to advance and withdraw the radiation shields. A blanket-like radiation shield covers the patient in the area surrounding where the X-ray beam enters the body.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 3, 2021
    Assignee: Radiaction Ltd.
    Inventors: Amir Belson, James J. Leary
  • Patent number: 11081311
    Abstract: An x-ray source can include an x-ray tube, and a heat sink for removal of heat from the x-ray tube. The heat sink can be thermally coupled to the anode and can extend away from the anode along a heat sink longitudinal axis. The heat sink can have a base and a fin extending from the base. The base can have a greater thickness nearer the anode, and a reduced thickness along the heat sink longitudinal axis to a smaller thickness farther from the anode.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 3, 2021
    Assignee: Moxtek, Inc.
    Inventor: Todd S. Parker
  • Patent number: 11075052
    Abstract: The present disclosure provides an x-ray device including a housing configured to provide a vacuum therein, a cathode arranged inside the housing and configured to emit electrons, an anode arranged inside the housing and configured to produce x-ray radiation when impacted by electrons emitted by the cathode, and a converter configured to convert the x-ray radiation produced by the anode into monochromatic x-ray radiation, wherein the anode is configured to produce x-ray radiation in transmission and is arranged between the cathode and the converter. The present disclosure may be used in medical imaging, therapy, spectroscopy, and the like. Geometries and configurations may be improved compared to previously known x-ray devices when it comes to requirements for space, materials used, complexity of electrical wiring, distance between cathode and anode, and providing supplementary functions.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: July 27, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Jörg Freudenberger, Anja Fritzler, Peter Geithner, Peter Hackenschmied, Thomas Weber
  • Patent number: 11071877
    Abstract: A method for generating a radiation treatment plan is provided. The method may include determining a set of one or more optimization goals for radiation delivery by a therapeutic radiation delivery apparatus. The method may also include determining a plan for radiation delivery from a radiation source of the therapeutic radiation delivery apparatus. The radiation source may be capable of continuously rotating around a subject. The plan may include a plurality of radiation segments. Each radiation segment may be characterized by at least one parameter selected from a start angle, a stop angle, a two-dimensional segment shape, or a segment MU value such that the plurality of radiation segments satisfy the set of one or more optimization goals by superimposing at least two radiation segments from at least two different rotations into a target volume of the subject.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: July 27, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Jingjie Zhou, Li Wang, Cheng Ni, Johannes Stahl, Jonathan Maltz
  • Patent number: 11051774
    Abstract: The invention relates to a computed tomography radiological apparatus including: an X-ray source (22) capable of emitting an X-ray beam longitudinally towards an object, a device (32) for simultaneously splitting the beam into a plurality of beam portions each having a defined propagation direction relative to the longitudinal direction of emission of said X-ray beam, several sensors (20a-c) intended to receive beam portions which irradiated the object and are arranged transversely side by side relative to the longitudinal direction of the beam, the assembly consisting of X-ray source-splitting device-sensors being capable of turning about an axis of rotation (24) and of adopting different geometric orientations that are angularly shifted with respect to one another in order to, on the one hand, irradiate the object along each one of said geometric orientations of said assembly with the plurality of X-ray beam portions, and, on the other hand, to receive along each one of these geometric orientations the p
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: July 6, 2021
    Inventors: Sylvie M. Bothorel, Colombe Maury
  • Patent number: 11051775
    Abstract: A mobile radiography apparatus with a portable transport frame has a sectioned vertical column mounted on the transport frame. The sectioned vertical column defines a vertical axis and has a vertically fixed base section and an upper section that is movable with respect to the base section along the vertical axis. Cable and pulley systems are coupled to the vertical column sections and/or the transport frame. A boom is coupled to the movable section for positioning an x-ray source attached to the boom.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: July 6, 2021
    Assignee: Carestream Health, Inc.
    Inventor: Anthony Dirisio