Patents Examined by Christopher Kessler
  • Patent number: 8512487
    Abstract: A seamless expandable oil country tubular article, which has a superior pipe expansion property in a expanding process at an expand ratio of more than about 30% although having a high strength such as a tensile strength (TS) of about 600 MPa or more, and a manufacturing method thereof, the seamless expandable oil country tubular goods being in an as-rolled state or being processed, optionally necessary, by inexpensive nonthermal-refining type heat treatment.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: August 20, 2013
    Assignee: JFE Steel Corporation
    Inventors: Yoshio Yamazaki, Yukio Miyata, Mitsuo Kimura, Kei Sakata, Masahito Tanaka
  • Patent number: 8460603
    Abstract: An object of the present invention is to provide an electrical discharge surface treatment-purpose electrode that stabilizes properties and a film-forming rate of a coating made by surface treatment that uses the electrode showing a narrow distribution in physical properties such as a composition and resistance. A method of manufacturing an electrical discharge surface treatment-purpose electrode according to the present invention is identified as a method of manufacturing an electrical discharge surface treatment-purpose electrode formed of a green compact made of a metal powder subjected to compression molding, characterized in that the method includes the step of forming a nitride coating by nitriding a surface of the metal powder, and the step of forming a green compact by subjecting the metal powder having its surface nitrided to compression molding.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Shigyo, Yoshikazu Nakano
  • Patent number: 8460602
    Abstract: A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 11, 2013
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Osamu Itoh
  • Patent number: 8449816
    Abstract: A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: May 28, 2013
    Assignee: Brookhaven Science Associates
    Inventors: Yurii D. Seropeghin, Boris L. Zhuikov
  • Patent number: 8444914
    Abstract: The invention concerns a process for the polishing of metallic dental prostheses, such as frames. In order to reproducibly obtain a defined surface roughness with no need for additional finishing, it is proposed for the dental prosthesis to be polished by means of plasma polishing.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: May 21, 2013
    Assignee: Degudent
    Inventors: Stefan Fecher, Martin Haizmann, Lothar Volkl, Lars Weisensel
  • Patent number: 8430974
    Abstract: A steel component formed by carburizing and then induction-hardening of a steel consisting essentially of, by mass, C: minimum 0.08% and less than 0.3%; Si: maximum 2.0%; Mn: from 0.2% to 3.0%; P: maximum 0.03%; S: from 0.005% to 0.05%; Ni: maximum 1.5%; Cr: maximum 3.0%; Mo: maximum 1.0%; O: maximum 0.0025%; and N: from 0.005% to 0.03%; and further including either or both of, by mass, Al: from 0.005% to 0.05%, and Ti: from 0.005% to 0.05%; and still further including either or both of, by mass, V: maximum 0.3%, and Nb: maximum 0.3%; and a balance including Fe and unavoidable impurities. The hardness of the surface layer is at least 55 HRC and the hardness of the core portion is from 20 to 50 HRC. The core portion does not include a martensite structure.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 30, 2013
    Assignees: Aisin AW Co., Ltd., Nippon Steel Corporation Muroran Works
    Inventors: Takao Taniguchi, Hisao Shirai, Kouji Ohbayashi, Kazuaki Okada, Hideo Kanisawa, Shuji Kozawa
  • Patent number: 8425652
    Abstract: There is disclosed a method of making a ready to press cemented carbide powder with low compaction pressure suitable for the production of submicron cemented carbide by means of powder metallurgical techniques milling, pressing and sintering. The method comprises using from about 1 to about 3 wt-% pressing agent with the following composition, less than about 90 wt-% PEG and from about 10 to about 75 wt-% of blends of high molecular (C12-<C20) saturated or unsaturated fatty acids, or salts thereof containing at least one element of Al, Ba, Ca, Co, Cr, Mg, N, Na, V, Zn. Preferably the grain size of the cemented carbide powder is submicron. In a preferred embodiment the method includes a dry pre-milling of the hard constituents mainly WC-powder for about 2-45 hours in ball mills with cemented carbide milling bodies or using other suitable dry milling techniques prior to a wet milling step. The invention also relates to the powder obtained by the method.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: April 23, 2013
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ove Alm, Alistair Grearson, Susanne Norgren
  • Patent number: 8409371
    Abstract: A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10?12 to 1×10?1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 2, 2013
    Assignee: Diamet Corporation
    Inventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
  • Patent number: 8409498
    Abstract: A sputter target material which is of a sintered material, wherein the sputter target material consists of 0.5 to 50 atomic % in total of at least one metal element (M) selected from the group of Ti, Zr, V, Nb and Cr, and the balance of Mo and unavoidable impurities, and has a microstructure seen at a perpendicular cross section to a sputtering surface, in which microstructure oxide particles exist near a boundary of each island of the metal element (M), and wherein the maximum area of the island, which is defined by connecting the oxide particles with linear lines so as to form a closed zone, is not more than 1.0 mm2.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: April 2, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Keisuke Inoue, Tsuyoshi Fukui, Shigeru Taniguchi, Norio Uemura, Katsunori Iwasaki, Kazuya Saitoh
  • Patent number: 8382919
    Abstract: A process of forming an ultrafine crystal layer in a workpiece constituted by a metallic material. The process includes: performing a machining operation on a surface of the workpiece, so as to impart a large local strain to the machined surface of the workpiece, where the machining operation causes the machined surface of the workpiece to be subjected to a plastic working that causes to have large local strain in the form of a true strain of at least one, such that the ultrafine crystal layer is formed in a surface layer portion of the workpiece that defines the machined surface of the workpiece. Also disclosed are a nanocrystal layer forming process, a machine component having the ultrafine crystal layer or the nanocrystal layer, and a machine component producing process of producing the machine component.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: February 26, 2013
    Assignees: Toyohashi University of Technology, Univance Corporation
    Inventors: Minoru Umemoto, Yoshikazu Todaka, Tadashi Suzuki, Toshiichi Ota, Akihiro Yamashita, Shuji Tanaka
  • Patent number: 8377373
    Abstract: Disclosing herein is a method for manufacturing nickel-titanium compositions. The method includes disposing a powdered composition in a mold; the powdered composition comprising nickel and titanium; the titanium being present in an amount of about 38 to about 42 wt % and the nickel being present in an amount of about 58 to about 62 wt %; sintering the powdered composition to produce a sintered preform; compacting the preform; machining the preform to form an article; heat treating the article; the annealing being conducted at a temperature of about 1650° F. to about 1900° F. at a pressure of about 3 Torr to about 5 Kg-f/cm2 for a time period of about 10 minutes to about 5 hours; and quenching the article.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 19, 2013
    Assignees: The United States of America, Abbott Ball Company
    Inventors: Glenn N. Glennon, Christopher DellaCorte
  • Patent number: 8366843
    Abstract: A method of manufacturing a 13Cr steel pipe which satisfies a hardness (HRC) of at most 22 with 13Cr grade L80 of American Petroleum Institute (API) standards, which is an indicator of a high strength, high yield ratio, and good corrosion resistance, is provided. A steel billet having a chemical composition comprising, in mass percent, C: 0.15-0.21%, Si: 0.16-1.0%, Mn: 0.35-1.0%, Cr: 10.5-14.0%, P: at most 0.020%, S: at most 0.0050%, Al: 0.025-0.050%, and a remainder of Fe and impurities is subjected to hot working with a finishing temperature of 800-960° C. to form a mother pipe, which is immediately quenched at a cooling rate of at least air cooling and then tempered by heating.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: February 5, 2013
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Nobuyuki Mori
  • Patent number: 8366994
    Abstract: A method for manufacturing a cobalt (Co) alloy-based ceramic composite sputtering target is provided. A cobalt ingot and a chromium (Cr) ingot are melted in vacuum and then nebulized to form a cobalt-chromium (CoCr) alloy powder. Additionally, a ceramic powder and a platinum powder are wetly mixed to form a platinum-ceramic (Pt-ceramic) slurry, in which the ceramic powder is applied onto the platinum powder's surface uniformly. Next, the CoCr alloy powder and the Pt-ceramic slurry are wetly mixed to form a CoCrPt-ceramic slurry. Thereafter, the CoCrPt-ceramic slurry is dried, molded and compressed to form the cobalt alloy-based ceramic composite sputtering target. The resulted cobalt alloy-based ceramic composite sputtering target, which has a fine and dense structure, uniform composition and lower magnetic permeability, is beneficial to a magnetron sputter deposition process, as well as a film sputtering process used in the magnetic recording industry.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 5, 2013
    Assignee: China Steel Corporation
    Inventors: Rong-Zhi Chen, Chun-Hao Chiu, Jui-Tung Chang, Deng-Far Hsu, Chih-Huang Lai
  • Patent number: 8361381
    Abstract: A process for making a diffusion hardened medical implant having a porous surface is disclosed. The medical implant is made by a hot isostatic pressing process which simultaneously forms that porous surface and the diffusion hardened surface.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 29, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Daniel A. Heuer, Vivek Pawar, Marcus Lee Scott, Shilesh C. Jani
  • Patent number: 8337747
    Abstract: In a process for manufacturing composite sintered machine components, the composite sintered machine component has an approximately cylindrical inner member and an approximately disk-shaped outer member, the inner member has pillars arranged in a circumferential direction at equal intervals and a center shaft hole surrounded by the pillars, and the outer member has holes corresponding to the pillars of the inner member and a center shaft hole corresponding to the center shaft hole of the inner member. The process comprises compacting the inner member and the outer member individually using an iron-based alloy powder or an iron-based mixed powder so as to obtain compacts of the inner member and the outer member, tightly fitting the pillars of the inner member into the holes of the outer member, and sintering the inner member and the outer member while maintaining the above condition so as to bond them together.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 25, 2012
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Hiromasa Imazato, Koichiro Yokoyama
  • Patent number: 8333923
    Abstract: A gray cast iron alloy is disclosed. The gray cast iron alloy includes carbon from about 3.05 to about 3.40 weight percent, niobium from about 0.05 to about 0.3 weight percent, and silicon from about 1.75 to about 2.3 weight percent. The gray cast iron alloy also includes nickel less than or equal to about 0.06 weight percent.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: December 18, 2012
    Assignee: Caterpillar Inc.
    Inventors: James K. Jaszarowski, Ronald Wayne Conklin, Leonard Wade Matheny, John Warren Edenburn, Kelly Brockhouse, legal representative, Michael Joseph Motyl
  • Patent number: 8329093
    Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact is disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which the mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: December 11, 2012
    Assignee: Forges de Bologne
    Inventor: Jacques Tschofen
  • Patent number: 8317944
    Abstract: One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 ?m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: November 27, 2012
    Assignee: U.S. Department of Energy
    Inventors: Paul D. Jablonski, David Alman, Omer Dogan, Gordon Holcomb, Christopher Cowen
  • Patent number: 8298480
    Abstract: A method of manufacturing specialized alloys having specific properties and an alloy made using this method. The methods involve the use of micro and/or nano-sized particles that are mixed into an alloy using a friction stir welding method. The micro and/or nano-sized particles are used to alter one or more characteristics of the alloy in the locations in which the micro and/or nano-sized particles are added. The micro and/or nano-sized particles may be metal particles, non-metal particles, or a combination thereof.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 30, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: William F. Jones, Srikanth C. Kottilingam
  • Patent number: 8287804
    Abstract: In the method for recovering a metal from a target that contains a metal and a metal oxide, the target contains a sintered body of the metal oxide after being heated under a condition of melting the metal without melting or decomposing the metal oxide. The target is heated in an upper crucible of a two-level crucible that includes the upper crucible with a through hole-formed in a bottom surface thereof, and a lower crucible disposed below the through hole, the size of the through hole being set such that it does not allow the sintered body of the metal oxide contained in the target to pass therethrough, and the melted metal is caused to flow into the lower crucible, so that the metal is separated from the metal oxide.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 16, 2012
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Kiyoshi Higuchi, Yasuyuki Goto