Patents Examined by Christopher Kessler
  • Patent number: 9107980
    Abstract: The invention relates to an orthopaedic implant made of a ceramic metal composite. The composite includes one phase that is a biocompatible metal or metal alloy and a second phase of ceramic particles examples of which include carbides, nitrides and/or oxides. In some embodiments, the implant comprises a homogeneous ceramic layer as part of a multilayered composition. In some embodiments, the multilayered composition comprises a homogeneous metal layer.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 18, 2015
    Assignee: Smith & Nephew, Inc.
    Inventors: Shilesh C. Jani, Vivek Devidas Pawar, Carolyn L. Weaver
  • Patent number: 9108246
    Abstract: The present invention provides a method for mixing a raw material powder for powder metallurgy that allows efficient mixing at a low cost with a simple measure and easy adjustment of the apparent density by performing first agitation mixing in which a powder mixture obtained by adding, to an iron powder, one or two or more members selected from lubricant powders, free-machining agent powders, and lubricant powders for sliding surface, an alloying powder, and a binding agent is agitated while increasing the temperature to a temperature TK equal to or higher than the melting point TM of the binding agent, the resultant is agitated while maintaining the temperature TK, and the resultant is further agitated while reducing the temperature from the temperature TK, and performing second agitation mixing in which the obtained powder mixture is agitated while cooling.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 18, 2015
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiaki Maeda, Kiyoshi Makino, Kotaro Okawa, Ichio Sakurada, Kuniaki Ogura, Yukiko Ozaki
  • Patent number: 9103007
    Abstract: The present invention discloses zinc-modified ferritic stainless steels and a manufacturing method thereof. The chemical composition of the ferritic stainless steels comprises 14-16 wt % chromium, 0.001-4 wt % zinc, 0.001-0.02 wt % nitrogen, 0.003-0.015 wt % carbon and the remaining of weight percentage of the composition is iron. By adding zinc into the composition, the ferritic stainless steels of the present invention have stronger capacity of corrosion resistance and lower manufacturing cost, as compared to the conventional stainless steels.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: August 11, 2015
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventor: Swe-Kai Chen
  • Patent number: 9085811
    Abstract: A method for improving a residual stress in a pipe includes improving the residual stress in the inner surface to the compressive direction by rapid cooling of the inner surface after heating of the pipe. The heating is to heat a vicinity of a welded part of the pipe from the outer surface to raise the temperature to a construction temperature. The rapid cooling is to rapidly cool the inner surface in the vicinity of the welded part by supplying cooling water into the pipe. The heating and the rapid cooling are repeated twice or more. A method for construction management includes determining whether construction has been executed properly based on a maximum value of a lowering rate of an outer surface temperature of the pipe when the cooling water is supplied for the rapid cooling of the inner surface and a thickness of the pipe in a measuring position of the outer surface temperature.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: July 21, 2015
    Assignee: HITACHI-GE NUCLEAR ENERGY, LTD.
    Inventors: Shinobu Okido, Naohiko Oritani, Yuka Fukuda, Satoru Aoike, Masaki Tsuruki, Satoshi Kanno
  • Patent number: 9073121
    Abstract: In a method for producing a sintered compact, a composition containing metal powder and an organic binder is formed into a given shape. When baking is performed by using a baking furnace inside of which a jig containing silica is provided, a furnace atmosphere of the baking furnace is set to be an atmosphere of inert gas, a furnace pressure is controlled to be 0.1 kPa or more but 100 kPa or less, and the furnace pressure during baking is increased at a time when the process is in the middle of heating-up.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: July 7, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Hidefumi Nakamura, Hideki Ishigami
  • Patent number: 9074272
    Abstract: A high-strength cold-rolled steel sheet excellent in uniform elongation, including in percent by mass: 0.10-0.28% of C; 1.0-2.0% of Si; and 1.0-3.0% of Mn, and the structures of the same having the space factors below to the entire structure: 30-65% of bainitic ferrite; 30-50% of polygonal ferrite; and 5-20% of residual austenite.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 7, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Akamizu, Yoichi Mukai, Shushi Ikeda, Koichi Sugimoto
  • Patent number: 9051645
    Abstract: Provided are a barrier film for a semiconductor wiring containing Ni with its remainder being W and unavoidable impurities and having a composition of WxNiy (70?x?90, 10?y?30 unit: atomic percent), and a sintered compact sputtering target for forming a barrier film for a semiconductor wiring containing Ni with its remainder being W and unavoidable impurities and having a composition of WxNiy (70?x?90, 10?y?30, unit: atomic percent), and comprising a target structure configured from a W matrix and Ni particles existing therein and in which W is diffused in the Ni particles.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 9, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shinichiro Senda, Yasuhiro Yamakoshi, Junichi Ito
  • Patent number: 9044806
    Abstract: A method of metal injection molding on a plastics injection molding machine having a heated barrel with an increasing temperature gradient is disclosed. The method comprises the steps of providing a metal alloy feedstock including a first metal alloy with a first melting point and a second metal alloy with a second melting point that is higher than the first melting point, the first metal alloy and the second metal alloy providing a gradient in composition of solids to liquids paralleling the temperature gradient of the heated barrel, feeding the first metal alloy and the second metal alloy into the plastics injection molding machine, heating the first metal alloy and the second metal alloy within the plastics injection molding machine to about 500-700° F./260-372° C.; and forming an equilibrium of about 5% to about 30% solids to liquids between the first metal alloy and second metal alloy within the heated barrel.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 2, 2015
    Assignee: COOL POLYMERS, INC.
    Inventors: Kevin A. McCullough, James D. Miller
  • Patent number: 9028627
    Abstract: A method for treating a component comprising a metallic or ceramic material with a crystalline, semi-crystalline or amorphous structure. According to the method, to case-harden the component, at least part of the surface of the component is exposed to an oil jet, while the temperature of the oil and/or the component is regulated. Also disclosed is a device for carrying out the method.
    Type: Grant
    Filed: December 3, 2005
    Date of Patent: May 12, 2015
    Assignee: AB SKF
    Inventors: Wolfgang Nierlich, Jurgen Gegner
  • Patent number: 9017494
    Abstract: A high-strength seamless steel pipe for oil wells excellent in sulfide stress cracking resistance which comprises, on the percent by mass basis, C: 0.1 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.0%, Cr: 0.05 to 1.5%, Mo: 0.05 to 1.0%, Al: 0.10% or less, Ti: 0.002 to 0.05% and B: 0.0003 to 0.005%, with a value of equation “C+(Mn/6)+(Cr/5)+(Mo/3)” of 0.43 or more, with the balance being Fe and impurities, and in the impurities P: 0.025% or less, S: 0.010% or less and N: 0.007% or less. The seamless steel pipe may contain a specified amount of one or more element(s) of V and Nb, and/or a specified amount of one or more element(s) of Ca, Mg and REM. The seamless steel pipe can be produced at a low cost by adapting an in-line tube making and heat treatment process having a high production efficiency since a reheating treatment for refinement of grains is not required.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 28, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yuji Arai, Tomohiko Omura, Keiichi Nakamura
  • Patent number: 9017599
    Abstract: There is provided a sliding part in which a surface coverage ratio of copper in the sliding part increases. A bearing which is the sliding part is formed by filling the raw powder into the filling portion of the forming mold, compacting the raw powder to form a powder compact, which is sintered. A copper-based raw powder is composed of a copper-based flat raw powder whose diameter is smaller than that of an iron-based raw powder and an aspect ratio larger than that of the iron-based raw powder, and a copper-based small-sized raw powder whose diameter is smaller than that of the copper-based flat raw powder. The copper is allowed to segregate at the surface of the sliding part. The surface of the bearing is covered with the copper-based small-sized raw powder and the copper-based flat raw powder, thereby the surface coverage ratio of copper can be increased.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 28, 2015
    Assignee: Diamet Corporation
    Inventors: Teruo Shimizu, Tsuneo Maruyama
  • Patent number: 9005378
    Abstract: Disclosed is a spring steel wire rod that comprises C in a range of 0.35 to 0.65% (mass %, the same applies to respective elements described hereinafter), Si in a range of 1.4 to 2.2%, Mn in a range of 0.10 to 1.0%, Cr in a range of 0.1 to 2.0%, P not more than 0.025% (0% excluded), and S not more than 0.025% (0% excluded), balance comprising iron, and unavoidable impurities, wherein an average grain size Dc of a central part of the steel wire rod is not more than 80 ?m while an average grain size Ds of a surface layer part of the steel wire rod is not less than 3.0 ?m.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: April 14, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Takuya Kochi, Shogo Murakami, Takeshi Kuroda, Hiromichi Tsuchiya
  • Patent number: 8999227
    Abstract: A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Osamu Itoh
  • Patent number: 8992827
    Abstract: A process is provided for producing aluminum-titanium-boron grain refining master alloys containing soluble titanium aluminide and insoluble aluminum boride particles, the process comprising mixing aluminum-boron alloy powder and K2TiF6 salt to obtain a blended mixture, heat treating the mixed powder blend thus obtained in an inert gas furnace just below the melting point of aluminum, at approximately 650 degrees Celcius sufficiently long and compacting the heated powder blend in the form of tablets. The cast grain size of an aluminum- 7 wt % silicon foundry alloy after inoculation with this master alloy at an addition level of 0.02% Ti was less than 200 microns for contact times of upto 15 minutes.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: March 31, 2015
    Assignee: Tubitak
    Inventor: Yucel Birol
  • Patent number: 8992661
    Abstract: A series of inventions leading to the production of specific aluminum alloys (especially aluminum beverage can sheet product) through novel approach of introducing, selectively partitioning and managing alloying elements. This invention also enables manufacturing practices to enhance the performance characteristics of aluminum alloys produced. The selected elements can be derived from carbon anodes made from calcined petroleum coke with high metallic contents (such as nickel and vanadium). Alloying elements can also be introduced and managed from other raw material such as alumina and bath constituents added during aluminum smelting process. Additionally, cell operating parameters, such as cell temperature, off gas flow rate, aluminum tapping rate and impurity partition characteristics can also be manipulated to produce low cost aluminum alloys and facilitate utilization of high metallic content calcined petroleum coke.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Tri-Arrows Aluminum Inc.
    Inventors: Gyan Jha, Frank R. Cannova, Subodh K. Das, Barry A. Sadler
  • Patent number: 8961717
    Abstract: The present invention provides stainless steel foil for flexible display use which enables fabrication of a TFT substrate for display use which is superior in shape recovery after being rolled up or bent and which is high in surface flatness and is characterized by having a thickness of 20 ?m to 200 ?m, a surface roughness Ra of 50 nm or less, and a shape recovery of a distortion angle of 10° or less after being wound around a 30 mm diameter cylinder.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: February 24, 2015
    Assignee: Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Noriko Yamada, Toyoshi Ogura, Yuji Kubo, Shuji Nagasaki
  • Patent number: 8961713
    Abstract: The present invention provides stainless steel foil for flexible display use which enables fabrication of a TFT substrate for display use which is superior in shape recovery after being rolled up or bent and which is high in surface flatness and is characterized by having a thickness of 20 ?m to 200 ?m, a surface roughness Ra of 50 nm or less, and a shape recovery of a distortion angle of 10° or less after being wound around a 30 mm diameter cylinder.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 24, 2015
    Assignee: Nippon Steel Materials Co, Ltd.
    Inventors: Noriko Yamada, Toyoshi Ogura, Yuji Kubo, Shuji Nagasaki
  • Patent number: 8932516
    Abstract: It is an objective of the present invention to provide an aluminum porous body which is formed of a pure aluminum and/or aluminum alloy base material and has excellent sinterability and high dimensional accuracy without employing metal stamping. There is provided an aluminum porous body having a relative density of from 5 to 80% with respect to the theoretical density of pure aluminum, in which the aluminum porous body contains 50 mass % or more of aluminum (Al) and from 0.001 to 5 mass % of at least one selected from chlorine (Cl), sodium (Na), potassium (K), fluorine (F), and barium (Ba). It is preferred that the aluminum porous body further contains from 0.1 to 20 mass % of at least one selected from carbon (C), silicon carbide (SiC), iron (II) oxide (FeO), iron (III) oxide (Fe2O3), and iron (II,III) oxide (Fe3O4).
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Masami Taguchi, Kazutaka Okamoto, Akio Hamaoka, Kouji Sasaki
  • Patent number: 8926771
    Abstract: Process for manufacturing seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders comprising the following steps; —(i) providing a steel having a composition comprising 0.06-0.15% by weight of carbon, 0.30-2.5% by weight of Mn, and 0.10-0.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: January 6, 2015
    Assignee: Tenaris Connections Limited
    Inventors: Gianmario Agazzi, Emanuele Paravicini Bagliani, Andrea Poli
  • Patent number: 8926896
    Abstract: One embodiment includes providing a first layer including a first powder material and a second layer including a second powder material over the first layer, and compacting the first powder material and the second powder material using at least a first magnetic field.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Shekhar G. Wakade, Mark A. Osborne, William L. Miller