Patents Examined by Christopher S Kessler
  • Patent number: 10865458
    Abstract: A bulletproof steel plate with a tensile strength of 2000 MPa grade and a Brinell Hardness of 600 grade and a manufacturing method thereof, characterized by that the chemical elements in mass percentage thereof being: 0.35-0.45% of C, 0.80-1.60% of Si, 0.3-1.0% of Mn, 0.02-0.06% of Al, 0.3-1.2% of Ni, 0.30-1.00% of Cr, 0.20-0.80% of Mo, 0.20-0.60% of Cu, 0.01-0.05% of Ti, 0.001-0.003% of B, and the balance being Fe and inevitable impurities. The tensile strength of the steel plate can reach a grade of 2000 MPa and its Brinell Hardness can reach a grade of 600.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: December 15, 2020
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Xiaoting Zhao, Fengbin Li, Liandeng Yai, Hongbin Li
  • Patent number: 10850327
    Abstract: Devices for additive manufacturing of a three-dimensional object from powdered material include a main body providing an object forming chamber and, within a front wall, an opening for accessing the object forming chamber. A work surface delimits the object forming chamber and includes a build platform section for manufacturing thereon the three-dimensional object. A door is provided at the front wall and positionable in a closed state to seal the opening or in an opened state to provide access to the object forming chamber. The devices include a gas flow system for providing a gas flow across the build platform section and including a main body section extending within the main body and a door section being part of the door and including an opening structure arranged to release gas to, or to receive gas from, above the build platform section in the closed state of the door.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: December 1, 2020
    Assignee: TRUMPF SISMA S.r.l.
    Inventors: Fausto Riva, Sergio Canaglia
  • Patent number: 10850315
    Abstract: Provided is a manufacturing method for high-toughness and plasticity hypereutectoid rail, including: a. hot rolling the steel billet into rail; b. blowing a cooling medium to the top surface of railhead, wherein, the two sides of railhead and the lower jaws on the two sides of railhead after the center of top surface of rail is air-cooled to 800-850° C., and cooling the rail until the center temperature of the top surface is 520-550° C.; c. stop blowing the cooling medium to the lower jaws on the two sides of railhead, continue blowing the cooling medium to the top surface of railhead and the two sides of railhead, and air cool the rail to room temperature after the surface temperature of railhead is cooled to 430-480° C. The resulting hypereutectoid rail has higher toughness and plasticity than existing products, which is suitable for heavy-haul railway, especially for small radius curve sections.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: December 1, 2020
    Assignee: Pangang Group Research Institute Co., Ltd.
    Inventors: Zhenyu Han, Ming Zou, Hua Guo, Jun Yuan
  • Patent number: 10844448
    Abstract: The present invention relates to a high speed steel with a chemical composition that comprises, in % by weight: 0.6-2.1 C 3-5 Cr 4-14 Mo max 5 W max 15 Co 0.5-4 V, balance Fe and impurities from the manufacturing of the material, which steel is powder metallurgically manufactured and has a content of Si in the range of 0.7<Si?2.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: November 24, 2020
    Assignee: ERASTEEL KLOSTER AKTIEBOLAG
    Inventor: Stefan Sundin
  • Patent number: 10844476
    Abstract: An object of the present invention is to reduce particles generated in sputtering, and in order to achieve such an object, there is provided a sputtering target material including in at. %: 10 to 50% of B; and the balance of at least one of Co and Fe, and unavoidable impurities, in which the intensity ratio [I [(CoFe)3B]/I [(CoFe)2B]] of the X-ray diffraction intensity [I [(CoFe)3B]] of (CoFe)3B (121) to the X-ray diffraction intensity [I [(CoFe)2B]] of (CoFe)2B (200), the intensity ratio [I (Co3B)/I (Co2B)] of the X-ray diffraction intensity [I (Co3B)] of Co3B (121) to the X-ray diffraction intensity [I (Co2B)] of Co2B (200), or the intensity ratio [I (Fe3B)/I (Fe2B)] of the X-ray diffraction intensity [I (Fe3B)] of Fe3B (121) to the X-ray diffraction intensity [I (Fe2B)] of Fe2B (200) is 1.50 or less.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 24, 2020
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Hiroyuki Hasegawa, Noriaki Matsubara
  • Patent number: 10837086
    Abstract: The present disclosure generally provides 6xxx series aluminum alloys and methods of making the same, such as through casting and rolling. The disclosure also provides products made from such alloys. The disclosure also provides various end uses of such products, such as in automotive, transportation, electronics, aerospace, and industrial applications, among others.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: November 17, 2020
    Assignee: NOVELIS INC.
    Inventors: Sazol Kumar Das, Rajeev G. Kamat, Milan Felberbaum
  • Patent number: 10837088
    Abstract: A coating material has Cr-rich regions having a Cr content >95% by mass which form Cr-containing particles. At least some of these particles are present in the form of aggregates or agglomerates, at least some have pores and have in the Cr-rich regions a mean nanohardness HIT 0.005/5/1/5 of ?4 GPa and/or a mean surface area, measured by BET, >0.05 m2/g. The coating material is particularly suitable for cold gas spraying. There is also described a process for the production of a coating, and to a coating produced by the process.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 17, 2020
    Assignee: Plansee SE
    Inventors: Martin Kathrein, Michael O'Sullivan
  • Patent number: 10837092
    Abstract: A method of making an alpha-beta titanium alloy is provided. The method includes forming a melt and solidifying the melt to form an ingot. The melt composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si at less than 1 wt. %; Fe at up to about 0.3 wt. %; 0 at less than 1 wt. %; and a balance of Ti and incidental impurities. Furthermore, the Al/V ratio in the melt is equal to the concentration of the Al divided by the concentration of the V in weight percent is from about 0.65 to about 0.8.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Patent number: 10837093
    Abstract: An alpha-beta titanium alloy is provided. The alpha-beta titanium alloy composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si from about 0.15 wt. % to about 0.6 wt. %; Fe up to about 0.3 wt. %; O from about 0.15 wt. % to about 0.23 wt. %; Ti and incidental impurities as a balance. The alpha-beta titanium alloy may have a solution treated and aged microstructure and an elongation of at least about 10% at room temperature. Also, the alpha-beta titanium alloy may have an Al/V ratio from about 0.65 to about 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Patent number: 10828699
    Abstract: The invention concerns a method for manufacturing at least one thin-walled structure (1,11,13,17,18), whereby this structure is built layer by layer by applying successive powder layers extending substantially horizontally and by moving an energy beam over each of these powder layers according to a predetermined pattern so as to make said powder melt and subsequently make it solidify or sinter, such that successive layers connected to each other of said thin-walled structure (1,11, 13,17,18) are formed which extend according to a horizontal cross section of this thin-walled structure (1, 11,13,17,18).
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: November 10, 2020
    Assignee: Layerwise N.V.
    Inventors: Peter Mercelis, Jonas Van Vaerenbergh, Wilfried Van Der Perre
  • Patent number: 10825589
    Abstract: Provided is an R-T-B based rare earth magnet. R is one or more rare earth elements, T is one or more transition metal elements essentially including Fe or Fe and Co, and B is boron. B content with respect to a total R-T-B based rare earth magnet is 0.80 mass % or more and 0.98 mass % or less. The R-T-B based rare earth magnet includes an R1T4B4 phase.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: November 3, 2020
    Assignee: TDK CORPORATION
    Inventors: Makoto Iwasaki, Tetsuya Hidaka, Eiji Kato, Takuma Hayakawa, Hidetake Kitaoka
  • Patent number: 10822675
    Abstract: This invention relates to a series of castable aluminum alloys with excellent creep and aging resistance, high electrical conductivity and thermal conductivity at elevated temperatures. The cast article comprises 0.4 to 2% by weight iron, 0 to 4% by weight nickel, 0.1 to 0.6 or about 0.1 to 0.8% by weight zirconium, optional 0.1 to 0.6% by weight vanadium, optional 0.1 to 2% by weight titanium, at least one inoculant such as 0.07-0.15% by weight tin, or 0.07-0.15% by weight indium, or 0.07-0.15% by weight antimony, or 0.02-0.2% by weight silicon, and aluminum as the remainder. The aluminum alloys contain a simultaneous dispersion of Al6Fe, Al3X (X=Fe, Ni) and/or Al9FeNi intermetallic in the eutectic regions and a dispersion of nano-precipitates of Al3ZrxVyTi1-x-y (0?x?1, 0?y?1 and 0?x+y?1) having L12 crystal structure in the aluminum matrix in between the eutectic regions. The processing condition for producing cast article of the present invention is disclosed in detail.
    Type: Grant
    Filed: March 5, 2016
    Date of Patent: November 3, 2020
    Assignee: NanoAL LLC
    Inventors: Amirreza Sanaty-Zadeh, Nhon Q. Vo
  • Patent number: 10815782
    Abstract: Methods for repairing a trailing edge of an airfoil are provided. The method can include removing a portion of the trailing edge of the airfoil to form an intermediate component, and then applying using additive manufacturing a replacement portion on the intermediate component to form a repaired airfoil. The replacement portion defines at least one trailing edge ejection slot.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventor: Ronald Scott Bunker
  • Patent number: 10814397
    Abstract: A method for synthesizing a reagent complex includes a step of ball-milling a mixture that includes: a powder of a zero-valent element; a hydride molecule; and a nitrile ligand. The method produces a reagent complex having a formula Q0.Xy.Lz, where Q0 is the zero-valent element, X is the hydride molecule, and L is the nitrile ligand. A process for synthesizing nanoparticles composed of the zero-valent element includes a step of adding solvent to the reagent complex. Crystal texture of the nanoparticles is modulated by appropriate selection of the molar ratio nitrile ligand in the reagent complex.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: October 27, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Elizabeth Marie Skoropata, Michael Paul Rowe, Johan Alexander van Lierop
  • Patent number: 10808305
    Abstract: This invention provides a high-strength PC steel wire having a chemical composition containing, in mass %, C: 0.90 to 1.10%, Si: 0.80 to 1.50%, Mn: 0.30 to 0.70%, P: 0.030% or less, S: 0.030% or less, Al: 0.010 to 0.070%, N: 0.0010 to 0.010%, Cr: 0 to 0.50%, V: 0 to 0.10%, B: 0 to 0.005%, Ni: 0 to 1.0%, Cu: 0 to 0.50%, and the balance: Fe and impurities. A ratio between the Vickers hardness (HvS) at a location (surface layer) that is 0.1D [D: diameter of steel wire] from the surface of the steel wire and the Vickers hardness (HvI) of a region on the inner side relative to the surface layer satisfies the formula [1.10<HvS/HvI?1.15]. An average carbon concentration in a region from the surface to a depth of 10 ?m (outermost layer region) of the steel wire is 0.8 times or less a carbon concentration of the steel wire. The steel micro-structure in the region on the inner side relative to the outermost layer region contains, in area %, a pearlite structure: 95% or more.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: October 20, 2020
    Assignees: NIPPON STEEL CORPORATION, SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Makoto Okonogi, Daisuke Hirakami, Masato Yamada, Katsuhito Oshima, Shuichi Tanaka
  • Patent number: 10793937
    Abstract: A steel for induction hardening according to an aspect includes, as a chemical composition, predetermined amounts of alloy elements and a remainder including Fe and impurities, in which Al×N is 0.000330 to 0.000825, Mn/S is 4.6 to 14.0, a machinability index M is 15.5 to 25.65, an area fraction of AlN having an equivalent circle diameter of more than 200 nm at a ¼ position of a diameter of the steel is 20% or less of an area fraction of all AlN having an equivalent circle diameter of 40 nm or more, and a number density of Mn sulfide-based inclusions having a maximum diameter of 0.3 ?m or more and 10 ?m or less at the ¼ position of the diameter is 100 pieces/mm2 or more and 2500 pieces/mm2 or less.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 6, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Toshiharu Aiso, Suguru Yoshida, Kei Miyanishi
  • Patent number: 10781511
    Abstract: A method for manufacturing a golf club head includes aging heat treat a sheet material made of a titanium alloy at 650-750° C. for 10-12 hours to obtain an aging heat treated sheet material. The aging heat treated sheet material is hot rolled to form a striking plate. The striking plate is annealed at 700-800° C. for 30-60 minutes to obtain an annealed striking plate. The annealed striking plate is welded to a club head body made of the titanium alloy to form a semi product. The semi product of the golf head is annealed at 500-700° C. for 30-240 minutes to obtain the golf club head. Thus, the golf club head with a Young's modulus higher than 119 GPa can be manufactured.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: September 22, 2020
    Assignee: Fusheng Precision Co., Ltd
    Inventors: Chun-Fu Chang, Gen-Wei Jhou
  • Patent number: 10758983
    Abstract: A method for synthesizing nanostructures includes introducing a solution of seed crystals into an initial growth solution to form a nanostructure synthesis mixture. The initial growth solution includes a precursor material and a reducing agent in a surfactant solution. Growth of nanostructures in the nanostructure synthesis mixture is monitored during a period of anisotropic growth of the nanostructures to determine a shift from stage II growth of the nanostructures to stage III growth of the nanostructures. The shift from stage II growth to stage III growth is identified, and after identifying the shift, a second growth solution is added to the nanostructure synthesis mixture coincident in time with the shift. The second growth solution includes the precursor material and the reducing agent in the surfactant solution.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: September 1, 2020
    Inventors: Richard A. Vaia, Kyoungweon Park
  • Patent number: 10752981
    Abstract: According to one implementation, a magnesium-lithium alloy in which at least lithium is added to magnesium is manufactured by giving a strain to a magnesium-lithium alloy workpiece, after a solution treatment, and progressing an aging of the magnesium-lithium alloy workpiece without a heat treatment. The strain is given by a cold working. The aging is progressed after giving the strain. Further, according to one implementation, an aircraft part includes the above-mentioned magnesium-lithium alloy as a material. Further, according to one implementation, a method of manufacturing an aircraft part includes processing the above-mentioned magnesium-lithium alloy.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 25, 2020
    Assignee: SUBARU CORPORATION
    Inventor: Ayako Miura
  • Patent number: 10737480
    Abstract: The present invention relates to a filament suitable to be used in a 3D printing device, wherein the filament comprises a metal and/or ceramic powder, a thermoplastic binder and additives. The invention also relates to a process for producing a shaped body comprising the step of printing a shaped green body using the filament according to the invention. Also provided is the use of a filament according to the invention in a 3D printing device and a green body producible by mixing a metal and/or ceramic powder and a thermoplastic binder. The invention also relates to the use of a binder of the invention for the production of a filament for 3D printing devices.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: August 11, 2020
    Assignee: AMRIL AG
    Inventors: Peter Daute, Manfred Jaeckel, Juergen Waldmann