Patents Examined by Chu Chuan Liu
  • Patent number: 10441219
    Abstract: A device (10, 10?, 10?) includes a light source (12) and a light detector (14) spaced from, and in communication with, the light source (12). An electronic processor (18) is programmed to compute pulse oximetry data from output of the light detector (14). A clamping member (26) is included, on or in which the light source (12) and the light detector (14) are disposed. The clamping member (26) is configured for attachment to a human body part with the body part disposed between the light source (12) and the light detector (14) such that light from the light source (12) passes through the body part to reach the light detector (14). The clamping member (26) is configured to attach to the body part by transitioning from a first stable state to a second stable state via a compression force applied to the clamping member (26).
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: October 15, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Wouter Herman Peeters, Egbertus Reinier Jacobs, Rick Bezemer, Jens Muehlsteff
  • Patent number: 10433776
    Abstract: A pulse oximeter may reduce power consumption in the absence of overriding conditions. Various sampling mechanisms may be used individually or in combination. Various parameters may be monitored to trigger or override a reduced power consumption state. In this manner, a pulse oximeter can lower power consumption without sacrificing performance during, for example, high noise conditions or oxygen desaturations.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: October 8, 2019
    Assignee: MASIMO CORPORATION
    Inventor: Ammar Al-Ali
  • Patent number: 10426388
    Abstract: A method for measuring differential blood oxygen saturation in a solid tumor is described that includes the steps of obtaining a first oxygenation image of a solid tumor before, during, or immediately after a administration of vascular therapy; obtaining a second oxygenation image of the solid tumor after a devascularization time period; and determining a differential blood oxygen saturation value by comparing the first oxygenation image and the second oxygenation image. The differential blood oxygen saturation value can be compared to a blood oxygen saturation necrosis value to provide a prognosis for tumor recurrence, or to guide of the tumor.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: October 1, 2019
    Assignee: THE GENERAL HOSPITAL CORPORATION
    Inventors: Tayyaba Hasan, Srivalleesha Mallidi
  • Patent number: 10426325
    Abstract: An image capturing system, comprising: a light source device that emits illumination light containing wavelength regions; an image pickup device having an RGB filter; and an image processing unit to calculate a first index representing a molar concentration ratio of a first biological substance and a second biological substance contained in the living tissue, wherein the wavelength regions comprise: a first wavelength region corresponding to a B filter; and a second wavelength region corresponding to a G filter, wherein: in the first wavelength region, a value of image data B varies depending on the molar concentration ratio; the second wavelength region contains a plurality of isosbestic points of the living tissue, and, in the second wavelength region, a value of image data G takes a constant value without depending on the molar concentration ratio.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: October 1, 2019
    Assignee: HOYA CORPORATION
    Inventor: Toru Chiba
  • Patent number: 10426367
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: October 1, 2019
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
  • Patent number: 10426387
    Abstract: A measurement system for measuring blood characteristics includes a controller, an emitter, a sensor, a reference photo sensor, and a mask. The emitter emits light at a plurality of wavelengths from a first side of a blood flow channel to a second side of the blood flow channel. The sensor is provided on the second side of the blood flow channel. The reference photo sensor is provided on the first side of the blood flow channel. The mask is provided on the first side blocking reflected light other than from the light from the emitter to enter the reference photo sensor. The controller compensates measurements from the sensor based upon measurements from the reference photo sensor.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: October 1, 2019
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Louis L. Barrett
  • Patent number: 10405783
    Abstract: A concentration measurement apparatus includes a probe, having a light incidence section making measurement light incident on the head and a light detection section detecting the measurement light that has propagated through the interior of the head, and a CPU determining temporal relative change amounts of oxygenated hemoglobin concentration and deoxygenated hemoglobin concentration and determining a correlation coefficient of the relative change amounts and a polarity of a slope of a regression line.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: September 10, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeo Ozaki, Susumu Suzuki
  • Patent number: 10405785
    Abstract: A method for determining a concentration of an analyte in a subject includes irradiating a part of the subject with electromagnetic radiation, wherein a part of the subject comprises biological molecules arranged to absorb the electromagnetic radiation and to emit fluorescence in response. The method also includes measuring fluorescence emitted to obtain data representative of a fluorescence decay. The method further includes processing the data to determine one or more feature points associated with the fluorescence decay and to generate one or more feature vectors based on the one or more feature points, and applying the one or more feature vectors to a regression model for the analyte to determine the concentration of the analyte. Also provided is a system for determining a concentration of an analyte in a subject, as well as a measurement device for facilitating determination of a concentration of an analyte in a subject.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: September 10, 2019
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Derek Ho, Wenrong Yan, Liping Wei, Yi Tian
  • Patent number: 10405798
    Abstract: A bio-information detecting apparatus includes: a band member curved in a C-shape, and attached around a neck part of an examinee from a back side of the neck part; and a pair of electrodes for cardiac potential measurement disposed at positions on the band member that come into contact with right and left skin surfaces of the neck part, and in the pair of electrodes, a position of the electrode on the right is located relatively more frontward than a position of the electrode on the left. The bio-information detecting apparatus further includes a substrate to optically measure a blood oxygen saturation for pulse measurement at a position on the band member that comes into contact with the neck part of the examinee, and a pressing force of the substrate against the skin surface of the neck part is 0.96 to 1.21 [N/cm2].
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: September 10, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hisashi Iizuka, Hirokazu Kikuchi
  • Patent number: 10398365
    Abstract: A light guide unit of a fluorescence sensor is disclosed, which includes at least an optical-waveguide film in which one or more optical waveguides are formed. Each of these films includes a plurality of optical channels that output excitation light (E) or input fluorescence (F). All the optical channels are covered with a fluorescence unit.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 3, 2019
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Masayuki Takahashi, Hiroya Sato, Eiji Arita
  • Patent number: 10398364
    Abstract: A device for non-invasively measuring at least one parameter of a cardiac blood vessel in a patient comprises at least one light source that directs light at a tissue site on the patient; at least one photodetector adapted to receive light emitted by the light source and generate an output based on the received light, the output of said photodetector being correlated with a parameter of the blood vessel; and at least one probe for facilitating delivery of light from the light source to the tissue site, and receipt of light by the photodetector. The device may include a height sensor to adapt it for use to determine central venous pressure, or the configuration of light source(s) and photodetector(s) may be adapted to permit the device to provide attenuation correction in the determination of venous blood oxygenation.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: September 3, 2019
    Assignee: Mespere Lifesciences Inc.
    Inventor: Xuefeng Cheng
  • Patent number: 10390729
    Abstract: A system and method are presented for use in monitoring one or more conditions of a subject's body. The system includes a control unit which includes an input port for receiving image data, a memory utility, and a processor utility. The image data is indicative of data measured by a pixel detector array and is in the form of a sequence of speckle patterns generated by a portion of the subject's body in response to illumination thereof by coherent light according to a certain sampling time pattern. The memory utility stores one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility is configured and operable for processing the image data to determine one or more corresponding body conditions; and generating output data indicative of the corresponding body conditions.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: August 27, 2019
    Assignees: Bar Ilan University, Universitat de Valencia
    Inventors: Zeev Zalevsky, Javier Garcia, Vicente Mico, Michael Belkin, Yevgeny Beiderman, Israel Margalit
  • Patent number: 10376191
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: August 13, 2019
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10376190
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: August 13, 2019
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10362974
    Abstract: Light reflected from a pregnant woman's abdomen and fetus contained therein that has been received by a detector and converted into a reflected electronic signal may be received by a processor. A portion of the reflected electronic signal that is reflected from the fetus may be isolated and the isolated portion of the reflected electronic signal may be analyzed to determine a fetal hemoglobin oxygen saturation level of the fetus. The isolation may be achieved by synchronizing the reflected electronic signal with a fetal heartbeat signal and multiplying the synchronized reflected electronic signal by the synchronized fetal heartbeat signal.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: July 30, 2019
    Assignee: RAYDIANT OXIMETRY, INC.
    Inventor: Neil Padharia Ray
  • Patent number: 10349898
    Abstract: Automated critical congenital heart defect (“CCHD”) screening systems and processes are described. A caregiver may be guided to use a single or dual sensor pulse oximeter to obtain pre- and post-ductal blood oxygenation measurements. A delta of the measurements indicates the possible existence or nonexistence of a CCHD. Errors in the measurements are reduced by a configurable measurement confidence threshold based on, for example, a perfusion index. Measurement data may be stored and retrieved from a remote data processing center for repeated screenings.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: July 16, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Ammar Al-Ali, Bilal Muhsin
  • Patent number: 10335068
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 2, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Patent number: 10314540
    Abstract: A vaginal ring sensor device adapted to be placed within the vaginal vault of a user, the device including a ring body, at least one through hole that passes through the ring body, and at least one biosensor structured and arranged to sense and/or measure a parameter of vaginal fluid as such fluid passes through the at least one through hole.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: June 11, 2019
    Assignee: Johnson & Johnson Consumer Inc.
    Inventors: Richard J. Fougere, Ming Dong
  • Patent number: 10314526
    Abstract: A biosensor including light emitting elements and a light receiving element disposed on a principal surface of a wiring board; a light shielding portion disposed between a light-emitting-element sealing portion and a light-receiving-element sealing portion; a base medium having light transmitting properties, disposed in parallel with the wiring board with the light shielding portion therebetween; an adhesion layer having light transmitting properties that bonds the base medium with the light-emitting-element sealing portion, the light-receiving-element sealing portion, and the light shielding portion; and a first electrocardiograph electrode attached to a principal surface of the base medium. Both end portions of the adhesion layer and both end portions of the base medium are disposed such that they overlap neither of the light-receiving-element sealing portion nor the light-emitting-element sealing portion when viewed from a direction normal to the principal surface of the wiring board.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 11, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Toru Shimuta, Yasutaka Fujii
  • Patent number: 10314543
    Abstract: A stand-on physiological sensor (e.g. floormat) measures vital signs and various hemodynamic parameters, including blood pressure and ECG waveforms. The sensor is similar in configuration to a common bathroom scale and includes electrodes that take electrical measurements from a patient's feet to generate bioimpedance waveforms, which are analyzed digitally to extract various other parameters, as well as a cuff-type blood pressure system that takes physical blood pressure measurements at one of the patient's feet. Blood pressure can also be calculated/derived from the bioimpedance waveforms. Measured parameters are transmitted wirelessly to facilitate remote monitoring of the patient for heart failure, chronic heart failure, end-stage renal disease, cardiac arrhythmias, and other degenerative diseases.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: June 11, 2019
    Assignee: TOSENSE, INC.
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran